matrix product formula for macdonald polynomials
play

Matrix product formula for Macdonald polynomials Jan de Gier 19 May - PowerPoint PPT Presentation

Matrix product formula for Macdonald polynomials Jan de Gier 19 May 2015, GGI, Firenze Collaborators: Luigi Cantini Michael Wheeler Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 1 / 26 Outline Macdonald


  1. Matrix product formula for Macdonald polynomials Jan de Gier 19 May 2015, GGI, Firenze Collaborators: Luigi Cantini Michael Wheeler Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 1 / 26

  2. Outline Macdonald polynomials 1 Construction of Matrix Product form 2 General solution and combinatorics 3 Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 2 / 26

  3. Macdonald polynomials I. What are Macdonald polynomials? Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 3 / 26

  4. Macdonald polynomials Symmetric group Let s i ( i = 1 , . . . , n − 1 ) be generators of the symmetric group S n : s i s i + 1 s i = s i + 1 s i s i + 1 s 2 i = 1 ; There exist a natural t -deformation of S n : 2 )( T i + t − 1 1 2 ) = 0 , ( T i − t ( i = 1 , . . . , n − 1 ) , T i T i + 1 T i = T i + 1 T i T i + 1 . This is the Hecke algebra (of type A n − 1 ) and S n is recovered when t → 1. Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 4 / 26

  5. Macdonald polynomials Polynomial action The generators s i act naturally on polynomials: s i f ( . . . , x i , x i + 1 , . . . ) = f ( . . . , x i + 1 , x i , . . . ) i = 1 , . . . n − 1 and the t -deformation also has an action: 2 tx i − x i + 1 = t ± 1 2 − t − 1 T ± 1 ( 1 − s i ) . i x i − x i + 1 Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 5 / 26

  6. Macdonald polynomials Polynomial action The generators s i act naturally on polynomials: s i f ( . . . , x i , x i + 1 , . . . ) = f ( . . . , x i + 1 , x i , . . . ) i = 1 , . . . n − 1 and the t -deformation also has an action: 2 tx i − x i + 1 = t ± 1 2 − t − 1 T ± 1 ( 1 − s i ) . i x i − x i + 1 The shifted operator, T i ( u ) = T i + t − 1 [ u ] = 1 − t u 2 [ u ] , 1 − t . satisfies the Yang–Baxter equation, T i ( u ) T i + 1 ( u + v ) T i ( v ) = T i + 1 ( v ) T i ( u + v ) T i + 1 ( u ) . Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 5 / 26

  7. Macdonald polynomials Nonsymmetric Macdonald polynomials We can extend to the affine Hecke algebra by adding a cyclic shift operator: ( ω f )( x 1 , . . . , x n ) = f ( qx n , x 1 , . . . , x n − 1 ) , ω T i = T i + 1 ω. Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 6 / 26

  8. Macdonald polynomials Nonsymmetric Macdonald polynomials We can extend to the affine Hecke algebra by adding a cyclic shift operator: ( ω f )( x 1 , . . . , x n ) = f ( qx n , x 1 , . . . , x n − 1 ) , ω T i = T i + 1 ω. This algebra has a family of commuting operators (Abelian subalgebra) generated by the Murphy elements: Y i = T i · · · T n − 1 ω T − 1 · · · T − 1 i − 1 . 1 which commute: [ Y i , Y j ] = 0 . Remark: Symmetric functions of { Y i } are central, i.e. commute with all elements in the Hecke algebra. Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 6 / 26

  9. Macdonald polynomials Nonsymmetric Macdonald polynomials Since the Y i commute, they can be diagonalised simultaneously: Definition (Nonsymmetric Macdonald polynomial E λ ) Y i E λ = y i ( λ ) E λ , The index λ = ( λ 1 , . . . , λ n ) is a composition, λ i ∈ N 0 , and y i ( λ ) = t ρ ( λ ) i q λ i Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 7 / 26

  10. Macdonald polynomials Nonsymmetric Macdonald polynomials Since the Y i commute, they can be diagonalised simultaneously: Definition (Nonsymmetric Macdonald polynomial E λ ) Y i E λ = y i ( λ ) E λ , The index λ = ( λ 1 , . . . , λ n ) is a composition, λ i ∈ N 0 , and y i ( λ ) = t ρ ( λ ) i q λ i Example: If λ = ( 3 , 0 , 4 , 4 , 2 ) , then define ρ = ( 2 , 1 , 0 , − 1 , − 2 ) Dominant weight λ + = ( 4 , 4 , 3 , 2 , 0 ) Reorder ρ in the same way as reordering λ + → λ ρ ( λ ) = ( 0 , − 2 , 2 , 1 , − 1 ) . Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 7 / 26

  11. Macdonald polynomials Macdonald polynomials E λ forms a basis in the ring of polynomials with top-degree λ + , E λ ( x 1 , . . . , x n ) = x λ 1 · · · x λ n � c λµ x µ + n 1 µ<λ (summation in dominance ordering) Definition (Symmetric Macdonald polynomials) � P λ + = E λ λ ≤ λ + Macdonald polynomials are ( q , t ) generalisations of Schur polynomials. Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 8 / 26

  12. Construction of Matrix Product form II. Matrix Product Form Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 9 / 26

  13. Construction of Matrix Product form Exchange relations Let δ be the anti-dominant weight ( δ 1 ≤ δ 2 ≤ . . . ≤ δ n ) . Definition (The exchange basis) f δ := E δ f ...,λ i ,λ i + 1 ,... := t − 1 2 T − 1 f ...,λ i + 1 ,λ i ,... λ i > λ i + 1 . i Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 10 / 26

  14. Construction of Matrix Product form Exchange relations Let δ be the anti-dominant weight ( δ 1 ≤ δ 2 ≤ . . . ≤ δ n ) . Definition (The exchange basis) f δ := E δ f ...,λ i ,λ i + 1 ,... := t − 1 2 T − 1 f ...,λ i + 1 ,λ i ,... λ i > λ i + 1 . i Then f solves the exchange equations 1 2 f ...,λ i ,λ i + 1 ,... T i f ...,λ i ,λ i + 1 ,... = t λ i = λ i + 1 , T i f ...,λ i ,λ i + 1 ,... = t − 1 2 f ...,λ i + 1 ,λ i ,... λ i > λ i + 1 , ω f λ n ,λ 1 ,...,λ n − 1 = q λ n f λ 1 ,...,λ n . • Dynamics of the multispecies asymmetric exclusion process • t 1 / 2 -deformed Knizhnik-Zamolodchikov equations Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 10 / 26

  15. Construction of Matrix Product form Matrix product ansatz Assume � � f λ ( x 1 , . . . , x n ) = Tr A λ 1 ( x 1 ) · · · A λ n ( x n ) S , This implies a matrix product for Macdonald polynomials as also � P λ + = f λ λ ≤ λ + ‘Normalisation of ASEP’. Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 11 / 26

  16. Construction of Matrix Product form Matrix product ansatz Assume � � f λ ( x 1 , . . . , x n ) = Tr A λ 1 ( x 1 ) · · · A λ n ( x n ) S , This implies a matrix product for Macdonald polynomials as also � P λ + = f λ λ ≤ λ + ‘Normalisation of ASEP’. The exchange relations imply the following algebra for the ‘matrices’ A : A i ( x ) A i ( y ) = A i ( y ) A i ( x ) , tA j ( x ) A i ( y ) − tx − y � � A j ( x ) A i ( y ) − A j ( y ) A i ( x ) = A i ( x ) A j ( y ) , x − y SA i ( qx ) = q i A i ( x ) S , Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 11 / 26

  17. Construction of Matrix Product form Zamolodchikov-Faddeev algebra For λ ⊂ r n the algebra relations can be rephrased by writing A ( r ) ( x ) = ( A 0 ( x ) , . . . , A r ( x )) T , as an ( r + 1 ) -dimensional operator valued column vector. Lemma (ZF algebra) The exchange relations are equivalent to ˇ R ( x , y ) · [ A ( x ) ⊗ A ( y )] = [ A ( y ) ⊗ A ( x )] 2 ( sl r + 1 ) R-matrix of dimension ( r + 1 ) 2 ( r = 1 is the 6-vertex model). ˇ R ( x , y ) is the U 1 t Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 12 / 26

  18. Construction of Matrix Product form Yang-Baxter algebra and Nested Matrix Product Form More familiar is rank r Yang-Baxter algebra: R ( x , y ) · [ L ( x ) ⊗ L ( y )] = [ L ( y ) ⊗ L ( x )] · ˇ ˇ R ( x , y ) Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 13 / 26

  19. Construction of Matrix Product form Yang-Baxter algebra and Nested Matrix Product Form More familiar is rank r Yang-Baxter algebra: R ( x , y ) · [ L ( x ) ⊗ L ( y )] = [ L ( y ) ⊗ L ( x )] · ˇ ˇ R ( x , y ) Assume a solution of the following modified RLL relation � � � � R ( r ) ( x , y ) · ˇ ˜ L ( x ) ⊗ ˜ L ( y ) ⊗ ˜ ˜ · ˇ R ( r − 1 ) ( x , y ) L ( y ) = L ( x ) s ˜ L ij ( qx ) = q i − j ˜ L ij ( x ) s . in terms of an ( r + 1 ) × r operator-valued matrix ˜ L ( x ) = ˜ L ( r ) ( x ) . Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 13 / 26

  20. Construction of Matrix Product form Yang-Baxter algebra and Nested Matrix Product Form More familiar is rank r Yang-Baxter algebra: R ( x , y ) · [ L ( x ) ⊗ L ( y )] = [ L ( y ) ⊗ L ( x )] · ˇ ˇ R ( x , y ) Assume a solution of the following modified RLL relation � � � � R ( r ) ( x , y ) · ˇ L ( x ) ⊗ ˜ ˜ L ( y ) ⊗ ˜ ˜ · ˇ R ( r − 1 ) ( x , y ) L ( y ) = L ( x ) s ˜ L ij ( qx ) = q i − j ˜ L ij ( x ) s . in terms of an ( r + 1 ) × r operator-valued matrix ˜ L ( x ) = ˜ L ( r ) ( x ) . Then A ( r ) ( x ) = ˜ L ( r ) ( x ) · ˜ L ( r − 1 ) ( x ) · · · ˜ L ( 1 ) ( x ) S ( r ) = s ( r ) · s ( r − 1 ) · · · s ( 1 ) Solves the ZF algebra ˇ R ( x , y ) · [ A ( x ) ⊗ A ( y )] = [ A ( y ) ⊗ A ( x )] Jan de Gier Matrix product formula for Macdonald polynomials 19 May 2015 13 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend