solving interacting particle systems by fourier like
play

Solving interacting particle systems by Fourier-like transforms - PowerPoint PPT Presentation

Solving interacting particle systems by Fourier-like transforms Leonid Petrov University of Virginia April 13, 2015 Stochastic higher spin vertex model Stochastic higher spin vertex model ( J = 1) particle interpretation: spin


  1. Solving interacting particle systems by Fourier-like transforms Leonid Petrov University of Virginia April 13, 2015

  2. Stochastic higher spin vertex model

  3. Stochastic higher spin vertex model ( J = 1) particle interpretation: spin interpretation:

  4. Stochastic higher spin vertex model ( J = 1) particle interpretation: spin interpretation: Vertex weights ( q , ν = q − I , α, J = 1 ) g − 1 g 1 + α q g α (1 − q g ) 0 0 0 1 1 + α 1 + α g g g + 1 g 1 − ν q g α + ν q g 1 0 1 1 1 + α 1 + α g g

  5. Vertex weights ( q , ν = q − I , α, J = 1 ) g g − 1 1 + α q g α (1 − q g ) 0 0 0 1 1 + α 1 + α g g g + 1 g 1 − ν q g α + ν q g 1 0 1 1 1 + α 1 + α g g Stochastic when q , ν ∈ [0 , 1), and α ≥ 0, q ∈ ( − 1 , 0], α ∈ (0 , 1 / | q | ), and � � ν ∈ − 1 / | q | , min(1 , α/ | q | ) , q ∈ [0 , 1), ν = q − I for I ∈ Z ≥ 1 , and α < − q − I , q ∈ (1 , + ∞ ), ν = q − I for I ∈ Z ≥ 1 , and − q − I < α < 0. The two latter cases bound the number of allowed vertical spins by I ∈ Z ≥ 1 .

  6. General higher spin vertex model ( q , ν, α ; J ∈ Z ≥ 1 ) — obtained by fusion from the J = 1 case. Vertex weights are expressed through q -Racah univariate orthogonal polynomials, or basic hypergeometric functions 4 φ 3 .

  7. General higher spin vertex model ( q , ν, α ; J ∈ Z ≥ 1 ) — obtained by fusion from the J = 1 case. One can have q J ∈ C (because general J vertex weights are polynomial in q J ). The model is stochastic if, for example, J ∈ Z ≥ 1 ; or α = − ν , q J α = − µ with 0 ≤ ν ≤ µ < 1: q -Hahn process [Povolotsky ’13], [Corwin ’14] General J system degenerates to most of the known Bethe ansatz integrable (1+1)d models from the Kardar-Parisi-Zhang universality class. (there are other processes with duality not fitting into this scheme, cf. [Carinci, Giardina, Redig, Sasamoto ’14] )

  8. General higher spin vertex model ( q , ν, α ; J ∈ Z ≥ 1 ) Degenerates to most of the known Bethe ansatz integrable (1+1)d models from the Kardar-Parisi-Zhang universality class. Stochastic higher spin exclusion process / zero range process q -Hahn TASEP Discrete time q -TASEP Stochastic six-vertex model [Korepin, Bogoli- ubov, Izergin, ’97] (ABA) q -TASEP ASEP Strict/weak [Kirillov–Reshetikhin polymer ’87] (fusion) Brownian motions Semi-discrete Brownian polymer with skew reflection [Mangazeev ’14] (R matrices) KPZ equation / SHE / continuum polymer [Borodin ’14] [Corwin–P. ’15] KPZ fixed point (e.g. Tracy-Widom distributions)

  9. Examples

  10. Stochastic six vertex model ( q > 1; ν = 1 / q ; − 1 / q < α < 0; J = 1 ) [Gwa-Spohn ’92], [Borodin–Corwin–Gorin ’14]

  11. Stochastic six vertex model ( q > 1; ν = 1 / q ; − 1 / q < α < 0; J = 1 ) [Gwa-Spohn ’92], [Borodin–Corwin–Gorin ’14]

  12. Infinite-spin model ( q ; 1 > ν > 0; α > 0; J = 1 )

  13. 4 vertical, 3 horizontal ( q ; ν = q − 4 ; α < − q − 4 ; J = 3 )

  14. Eigenfunctions

  15. Space reversed particle system Restrict the ( q , ν, α, J ) system to k -particle configurations ( n 1 ≥ n 2 ≥ . . . ≥ n k ). The transition operator (= transfer matrix) ˜ B α, q J α . z = ( z 1 , . . . , z k ) ∈ C k : Eigenfunctions depend on � k � ˜ 1 + q J α z j B α, q J α Ψ ℓ � Ψ ℓ � ( � n ) = z ( � n ) z � � 1 + α z j j =1

  16. Left eigenfunctions k � ˜ 1 + q J α z j B α, q J α Ψ ℓ � � Ψ ℓ ( � z ( � n ) = n ) , � � z 1 + α z j j =1 � � q j α + ν � 1 − z i (under condition � < 1 for all i and 1 ≤ j ≤ J − 1), � � 1 − ν z i 1+ q j α where � 1 − z σ ( j ) k � − n j z σ ( A ) − qz σ ( B ) � � � Ψ ℓ z ( � n ) = . � z σ ( A ) − z σ ( B ) 1 − ν z σ ( j ) σ ∈ S ( k ) 1 ≤ B < A ≤ k j =1 Remark B α, q J α depend on ( q , ν, α, J ), and eigenfunctions The operators ˜ — only on ( q , ν ): commuting system of transfer matrices. Remark The eigenfunctions are “algebraic”: they are not compactly sup- n (which is a natural domain for ˜ B α, q J α ). ported in � Cf. exponents as eigenfunctions of d / dx .

  17. Left eigenfunctions k � ˜ 1 + q J α z j B α, q J α Ψ ℓ � � Ψ ℓ ( � z ( � n ) = n ) , � � z 1 + α z j j =1 where � 1 − z σ ( j ) k � − n j z σ ( A ) − qz σ ( B ) � � � Ψ ℓ z ( � n ) = . � z σ ( A ) − z σ ( B ) 1 − ν z σ ( j ) 1 ≤ B < A ≤ k j =1 σ ∈ S ( k ) Right eigenfunctions � 1 − z σ ( j ) k � n j qz σ ( A ) − z σ ( B ) � � � Ψ r z ( � n ) = C q ,ν ( � n ) , � z σ ( A ) − z σ ( B ) 1 − ν z σ ( j ) B < A j =1 σ ∈ S ( k ) with k 1 + q J α z j z ˜ B α, q J α � � Ψ r Ψ r � ( � n ) = z . � � 1 + α z j j =1 B α, q J α is not (Hermitian) symmetric, but is con- The operator ˜ jugate to its transpose ( PT-symmetry ).

  18. Solving particle systems Goal Understand large-time behavior of the system, i.e., raise the B α, q J α to a large power, and preferably be matrix (operator) ˜ able to apply it to an arbitrary vector (i.e., arbitrary initial data). Via self-duality, this also gives moment information. 1 Diagonalize the operator (below: ASEP example) 2 Plancherel theory associated to eigenfunctions provides mutually inverse Fourier-like transforms 3 Project the initial data to eigenfunctions, evolve in the spectral space, then go back to the coordinate space using the inverse Fourier-like transform. Bonuses: • Fredholm determinants for special initial data; • explanation of Tracy-Widom’s symmetrization formulas • theory of symmetric functions associated with eigenfunctions (Cauchy and Pieri identities, etc.) [Borodin ’14]

  19. Coordinate Bethe ansatz for ASEP

  20. Coordinate Bethe ansatz for ASEP Let me explain the origin of the eigenfunctions in a simpler setup of the ASEP (first non-determinantal model shown to belong to the KPZ universality class [Tracy-Widom ’07+] ). L R R x 1 x 2 x 3 x k Let R + L = 1, q = R / L < 1, and H ( k ) be the Markov generator of the k -particle ASEP (in fact, it is conjugate to the XXZ Hamiltonian; the latter is not stochastic). Let the ASEP coordinates be x 1 < x 2 < . . . < x k .

  21. Coordinate Bethe ansatz for ASEP k = 1 : H (1) f ( x 1 ) = R( f ( x 1 + 1) − f ( x 1 )) + L( f ( x 1 − 1) − f ( x 1 )) .

  22. Coordinate Bethe ansatz for ASEP k = 1 : H (1) f ( x 1 ) = R( f ( x 1 + 1) − f ( x 1 )) + L( f ( x 1 − 1) − f ( x 1 )) . k = 2, x 1 + 1 < x 2 : H (2) f ( x 1 , x 2 ) = R( f ( x 1 + 1 , x 2 ) − f ( x 1 , x 2 )) + L( f ( x 1 − 1 , x 2 ) − f ( x 1 , x 2 )) + R( f ( x 1 , x 2 + 1) − f ( x 1 , x 2 )) + L( f ( x 1 , x 2 − 1) − f ( x 1 , x 2 )) H (1) + H (1) � � = f ( x 1 , x 2 ) . 1 2

  23. Coordinate Bethe ansatz for ASEP k = 1 : H (1) f ( x 1 ) = R( f ( x 1 + 1) − f ( x 1 )) + L( f ( x 1 − 1) − f ( x 1 )) . k = 2, x 1 + 1 < x 2 : H (2) f ( x 1 , x 2 ) = R( f ( x 1 + 1 , x 2 ) − f ( x 1 , x 2 )) + L( f ( x 1 − 1 , x 2 ) − f ( x 1 , x 2 )) + R( f ( x 1 , x 2 + 1) − f ( x 1 , x 2 )) + L( f ( x 1 , x 2 − 1) − f ( x 1 , x 2 )) H (1) + H (1) � � = f ( x 1 , x 2 ) . 1 2 k = 2, x 1 + 1 = x 2 : x 1 cannot jump right, x 2 cannot jump left H (2) f ( x 1 , x 2 ) = R( f ( x 1 , x 2 + 1) − f ( x 1 , x 2 )) + L( f ( x 1 − 1 , x 2 ) − f ( x 1 , x 2 )) H (1) + H (1) � � = f ( x 1 , x 2 ) + discrepancy , 1 2 discrepancy = R f ( x 1 + 1 , x 2 ) + L f ( x 1 , x 2 − 1) − f ( x 1 , x 2 )

  24. Coordinate Bethe ansatz for ASEP When x 1 + 1 = x 2 , discrepancy = R f ( x 1 + 1 , x 2 ) + L f ( x 1 , x 2 − 1) − f ( x 1 , x 2 ) involves values of f outside the “physical region” x 1 < x 2 . Therefore, we can assign arbitrary values to f outside this region so that discrepancy = 0. Can do the same for k particles, and the boundary conditions will involve only pairs of neighboring particles ( two-body boundary conditions ). ASEP is integrable in the sense of [Bethe ’31] H (1) + . . . + H (1) H ( k ) f = � � f if f such that for any i , 1 k R f ( . . . , x i +1 , x i +1 , . . . )+L f ( . . . , x i , x i +1 − 1 , . . . ) − f ( . . . ) = 0 whenever x i + 1 = x i +1 .

  25. Coordinate Bethe ansatz for ASEP Therefore, one can diagonalize each H (1) separately, and i combine the eigenfunctions so that to satisfy the boundary conditions. The sum of one-particle operators has eigenfunctions � 1 + z σ ( i ) k � − x i � � z = ( z 1 , . . . , z k ) ∈ C k . A σ ( � z ) , � 1 + z σ ( i ) / q i =1 σ ∈ S ( k ) These will be eigenfunctions for any choice of A σ ( � z ). Then it is possible to choose A σ ( � z ) to satisfy the boundary conditions, and thus one has ASEP eigenfunctions � 1 + z σ ( i ) k � − x i z σ ( B ) − qz σ ( A ) � � � z σ ( B ) − z σ ( A ) 1 + z σ ( i ) / q σ ∈ S ( k ) B < A i =1

  26. Coordinate Bethe ansatz for the higher spin vertex model

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend