discrete fourier transform
play

Discrete Fourier Transform Graduate School of Culture Technology - PowerPoint PPT Presentation

CTP 431 Music and Audio Computing Discrete Fourier Transform Graduate School of Culture Technology (GSCT) Juhan Nam 1 Outlines Fourier Series Fourier Transform Discrete-Time Fourier Transform Discrete Fourier Transform


  1. CTP 431 Music and Audio Computing Discrete Fourier Transform Graduate School of Culture Technology (GSCT) Juhan Nam 1

  2. Outlines § Fourier Series § Fourier Transform § Discrete-Time Fourier Transform § Discrete Fourier Transform – Fast Fourier Transform 2

  3. Fourier Series § Recall the “modes” in oscillation: the periodic signal x(t) with period T can be represented as ∞ x ( t ) = 1 ∑ r k sin(2 π kt / T ) N k = 1 – Correct? § General form of a periodic signal x(t) with period T – Add phase and D.C. offset ∞ x ( t ) = a 0 + 1 ∑ r k sin(2 π kt / T + φ ( k )) N k = 1 ∞ x ( t ) = a 0 + 1 ∑ ( a k cos(2 π kt / T ) + b k sin(2 π kt / T )) N k = 1 3

  4. Fourier Series § How can you get the coefficients? – Use the orthogonality of sinusoids T /2 ∫ cos(2 π mt / T )sin(2 π nt / T ) dt = 0 − T /2 $ T /2 T ( m = n ) & ∫ cos(2 π mt / T )cos(2 π nt / T ) dt = % 0 ( m ≠ n ) & ' − T /2 § Coefficients T /2 a k = 1 ∫ x ( t )cos(2 π kt / T ) dt T /2 T a 0 = 1 − T /2 ∫ x ( t ) dt T T /2 b k = 1 − T /2 ∫ x ( t )sin(2 π kt / T ) dt T − T /2 4

  5. Fourier Transform § What if the signal is not periodic? T → ∞ – An aperiodic signal can be approximated by – Angular frequency ω k = 2 π k / T = 2 π ( kF ) → ω = 2 π f Discrete ¡frequency ¡ Con0nuous ¡frequency ¡ § The general form is converted to ∞ ∫ x ( t ) = ( A ( ω )cos( ω t ) + B ( ω )sin( ω t )) d ω 0 § The coefficients are to ∞ ∞ A ( ω ) = 1 B ( ω ) = 1 ∫ ∫ x ( t )cos( ω t ) dt x ( t )sin( ω t ) dt π π −∞ −∞ 5

  6. Fourier Transform § Can we represent the transform in a simpler form? – Combine A(w) and B(w) into a single term – Amplitude and phase are explicit – Explain the properties of Fourier transform easily 6

  7. Fourier Transform § Euler’s identity e j θ = cos θ + j sin θ – Proof) Taylor’s series θ = π e j π + 1 = 0 – If , (“the most beautiful equation in math”) § Properties cos θ = e j θ + e − j θ sin θ = e j θ − e − j θ 2 2 j 7

  8. Fourier Transform § Plugging Euler’s identify in Fourier transform ∞ x ( t ) = 1 ( A ' ( ω )cos( ω t ) + B ' ( ω )sin( ω t )) d ω ∫ 2 π −∞ ∞ ∞ A ' ( ω ) = π A ( ω ) = B ' ( ω ) = π B ( ω ) = ∫ ∫ x ( t )cos( ω t ) dt x ( t )sin( ω t ) dt −∞ −∞ § Fourier Transform ∞ ∞ F ( ω ) = A ' ( ω ) − jB ' ( ω ) = x ( t ) e − j ω t ∫ ∫ x ( t )(cos( ω t ) − j sin( ω t )) dt = dt −∞ −∞ ∞ x ( t ) e − j ω t ∫ F ( ω ) = dt −∞ 8

  9. Fourier Transform § Inverse Fourier Transform ∞ x ( t ) = 1 ( A ' ( ω )cos( ω t ) + B ' ( ω )sin( ω t )) d ω ∫ 2 π −∞ ( A ' ( ω )( e j ω t + e − j ω t + B ' ( ω )( e j ω t − e − j ω t ∞ x ( t ) = 1 ∫ ) )) d ω 2 π 2 2 j −∞ ∞ x ( t ) = 1 1 + 1 2 ( A ' ( ω ) − jB ' ( ω )) e j ω t 2 ( A ' ( ω ) + jB ' ( ω )) e − j ω t d ω ∫ 2 π −∞ ∞ ∞ x ( t ) = 1 (1 + 1 2 F ( ω ) e j ω t ) d ω = Real{ 1 ∫ 2 F ( ω ) e j ω t ∫ F ( ω ) e j ω t d ω } 2 π 2 π −∞ −∞ ∞ x ( t ) = 1 F ( ω ) e j ω t ∫ d ω 2 π −∞ 9

  10. Discrete-Time Fourier Transform (DTFT) § DTFT – Time is sampled ∞ ∑ x ( n ) e − j ω n F ( ω ) = −∞ § Inverse DTFT – is periodic in frequency domain F ( ω ) π x ( t ) = 1 F ( ω ) e j ω t ∫ d ω 2 π − π 10

  11. Discrete Fourier Transform § Now, what if the discrete signal is finite in length ( N ) ? – This is the signal that we really handle x ( n ) = [ x 0 , x 1 , x 2 , ! , x N − 1 ] § We assume that x(n) is periodic with period N – Periodic in time à Sampling in frequency → ω k = 2 π kf k = 2 π k / N ω = 2 π f Con0nuous ¡frequency ¡ Discrete ¡frequency ¡ 11

  12. Discrete Fourier Transform § Discrete Fourier Transform N − 1 ∑ x ( n ) e − j 2 π kn / N X ( k ) = = X R ( k ) + jX I ( k ) n = 0 2 ( k ) + X I 2 ( k ) – Magnitude spectrum: X ( k ) = A ( k ) = X R ∠ X ( k ) = Θ ( k ) = tan − 1 ( X I ( k ) – Phase spectrum: X R ( k )) § Inverse Discrete Fourier Transform N − 1 x ( n ) = 1 ∑ X ( k ) e j 2 π kn / N N k = 0 12

  13. (Extra) Discrete Fourier Transform § Can we represent x(n) with a finite set of sinusoids? – Finding A ( k ), φ ( k ) N − 1 x ( n ) = 1 ∑ A ( k )cos(2 π kn / N + φ ( k )) N k = 0 § Orthogonality of Sinusoids – Inner product between two sinusoids # N − 1 N / 2 if p = q or p = N − q % ∑ cos(2 π pn / N )cos(2 π qn / N )) = $ 0 otherwise % N − 1 & n = 0 ∑ cos(2 π pn / N )sin(2 π qn / N )) = 0 # 0 otherwise n = 0 % N − 1 ∑ sin(2 π pn / N )sin(2 π qn / N )) = N / 2 if p = q $ % n = 0 − N / 2 if p = N − q % & 13

  14. (Extra) Discrete Fourier Transform § Do the inner product with the signal and sinusoids X R ( k ) = A ( k )cos Θ ( k ) N − 1 x ( n ) = 1 ∑ ( X R ( k )cos(2 π kn / N ) − X I ( k )sin(2 π kn / N )) X I ( k ) = A ( k )sin Θ ( k ) N k = 0 N − 1 N − 1 ∑ ∑ X R ( k ) = x ( n )cos(2 π kn / N ) X I ( k ) = − x ( n )sin(2 π kn / N ) n = 0 n = 0 We ¡assume ¡that ¡ ¡ A ( k ) = A ( N − k ) § Using Euler’s Identity N − 1 ∑ x ( n ) e − j 2 π kn / N X ( k ) = X R ( k ) + jX I ( k ) = n = 0 14

  15. (Extra) Discrete Fourier Transform § Now the inverse discrete Fourier transform is derived as N − 1 x ( n ) = 1 ∑ A ( k )cos(2 π kn / N + Θ ( k )) N k = 0 N − 1 = 1 ∑ A ( k )( e j (2 π kn / N + Θ ( k )) + e − j (2 π kn / N + Θ ( k )) ) / 2 N k = 0 N − 1 = 1 + X ( k ) e − j 2 π kn / N ) / 2 ∑ ( X ( k ) e j 2 π kn / N N k = 0 N − 1 N − 1 = Real{ 1 X ( k ) e j 2 π kn / N } = 1 ∑ ∑ X ( k ) e j 2 π kn / N N N k = 0 k = 0 15

  16. Fast Fourier Transform § Matrix multiplication view of DFT § In fact, we don’t compute this directly. There is a more efficiently way, which is called “Fast Fourier Transform (FFT)” – Complexity reduction by FFT: O( N 2 ) à O( N log 2 N ) – Divide and conquer 16

  17. Examples of DFT Sine ¡waveform ¡ Drum ¡ Flute ¡ 17

  18. Properties of DFT § Linearity: ax 1 ( n ) + bx 2 ( n ) ↔ aX 1 ( k ) + bX 2 ( k ) x ( n − m ) ↔ e − j 2 π mk / N X ( k ) § Shift: e j 2 π mn / N x ( n ) ↔ X ( k − m ) § Modulation (frequency shift): § Symmetry – If x(n) is real, the magnitude is even-symmetry and the phase is odd-symmetry § Convolution: x 1 ( n )* x 2 ( n ) ↔ X 1 ( k ) X 2 ( k ) x 1 ( n ) x 2 ( n ) ↔ X 1 ( k )* X 2 ( k ) (Duality) ¡ 18

  19. Zero-padding § Adding zeros to a windowed frame in time domain – Corresponds to “ideal interpolation” in frequency domain – In practice, FFT size increases by the size of zero-padding 19

  20. Demo: Fourier Series § Web Audio Demo – http://codepen.io/anon/pen/jPGJMK (additive synthesis) 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend