poisson clusters and unique factorization
play

Poisson Clusters and Unique Factorization Ken Goodearl University - PowerPoint PPT Presentation

Poisson Clusters and Unique Factorization Ken Goodearl University of California at Santa Barbara [joint work with Milen Yakimov] 0 Quick cluster algebra sketch (geometric type; coeffs field) K F = K ( y 1 , . . . , y N ) = rational


  1. Poisson Clusters and Unique Factorization Ken Goodearl University of California at Santa Barbara [joint work with Milen Yakimov] 0

  2. Quick cluster algebra sketch (geometric type; coeffs ∈ field) K ⊂ F = K ( y 1 , . . . , y N ) = rational function field clusters = transcendence bases for F / K initial cluster = ( y 1 , . . . , y N ) [1 , N ] ⊇ ex = set of exchangeable indices ( others are frozen ) M N × ex( Z ) ∋ B = exchange matrix ( with some conditions ) 1

  3. Quick cluster algebra sketch (geometric type; coeffs ∈ field) K ⊂ F = K ( y 1 , . . . , y N ) = rational function field clusters = transcendence bases for F / K initial cluster = ( y 1 , . . . , y N ) [1 , N ] ⊇ ex = set of exchangeable indices ( others are frozen ) M N × ex( Z ) ∋ B = exchange matrix ( with some conditions ) mutation in direction k ∈ ex : cluster ( y 1 , . . . , y N ) ∼ � cluster ( y 1 , . . . , y k − 1 , y ′ k , y k +1 , . . . , y N ) B ∼ � B ′ and ( by formulas involving B ) 1

  4. Quick cluster algebra sketch (geometric type; coeffs ∈ field) K ⊂ F = K ( y 1 , . . . , y N ) = rational function field clusters = transcendence bases for F / K initial cluster = ( y 1 , . . . , y N ) [1 , N ] ⊇ ex = set of exchangeable indices ( others are frozen ) M N × ex( Z ) ∋ B = exchange matrix ( with some conditions ) mutation in direction k ∈ ex : cluster ( y 1 , . . . , y N ) ∼ � cluster ( y 1 , . . . , y k − 1 , y ′ k , y k +1 , . . . , y N ) B ∼ � B ′ and ( by formulas involving B ) Iterate mutations in all ex directions cluster algebra := K -subalgebra of F generated by � all clusters from iterated mutations, together with y − 1 for k in some set inv ⊆ [1 , N ] \ ex k 1

  5. upper cluster algebra := of K [ z ± 1 � | i ∈ ex ⊔ inv ] [ z i | i / ∈ ex ⊔ inv ] i for original cluster and one-step mutations in all ex directions 2

  6. upper cluster algebra := of K [ z ± 1 � | i ∈ ex ⊔ inv ] [ z i | i / ∈ ex ⊔ inv ] i for original cluster and one-step mutations in all ex directions Laurent Phenomenon [Fomin-Zelevinsky] cluster algebra ⊆ upper cluster algebra ⊆ K [ y ± 1 1 , . . . , y ± 1 N ] 2

  7. upper cluster algebra := of K [ z ± 1 � | i ∈ ex ⊔ inv ] [ z i | i / ∈ ex ⊔ inv ] i for original cluster and one-step mutations in all ex directions Laurent Phenomenon [Fomin-Zelevinsky] cluster algebra ⊆ upper cluster algebra ⊆ K [ y ± 1 1 , . . . , y ± 1 N ] Some known cluster algebras : homogeneous coordinate rings of • Grassmannians Gr ( m , n ) [Scott] • partial flag varieties in semisimple algebraic groups type ADE [Geiß-Leclerc-Schr¨ oer] Some known upper cluster algebras : coordinate rings of • double Bruhat cells in semisimple algebraic groups / C [Berenstein-Fomin-Zelevinsky] 2

  8. Assume char( K ) = 0 from now on [ K = base field] Poisson algebra = a commutative algebra R with Lie bracket {− , −} : R × R − → R such that all { r , −} are derivations ( ↑ a Poisson bracket ) 3

  9. Assume char( K ) = 0 from now on [ K = base field] Poisson algebra = a commutative algebra R with Lie bracket {− , −} : R × R − → R such that all { r , −} are derivations ( ↑ a Poisson bracket ) E.G. O ( M m , n ( K )) with the standard Sklyanin bracket : { X ij , X il } = X ij X il ( j < l ) { X ij , X kj } = X ij X kj ( i < k ) � 0 ( i < k , j > l ) { X ij , X kl } = 2 X il X kj ( i < k , j < l ) 3

  10. Assume char( K ) = 0 from now on [ K = base field] Poisson algebra = a commutative algebra R with Lie bracket {− , −} : R × R − → R such that all { r , −} are derivations ( ↑ a Poisson bracket ) E.G. O ( M m , n ( K )) with the standard Sklyanin bracket : { X ij , X il } = X ij X il ( j < l ) { X ij , X kj } = X ij X kj ( i < k ) � 0 ( i < k , j > l ) { X ij , X kl } = 2 X il X kj ( i < k , j < l ) and coordinate rings of Poisson subvarieties of M m , n ( K ), such as GL n ( K ), double Bruhat cells of GL n ( K ) 3

  11. Consider a cluster algebra A ⊆ F = K ( y 1 , . . . , y N ) Assume F is a Poisson algebra / K 4

  12. Consider a cluster algebra A ⊆ F = K ( y 1 , . . . , y N ) Assume F is a Poisson algebra / K • a cluster ( z 1 , . . . , z N ) is log-canonical if { z i , z j } ∈ Kz i z j ∀ i , j • the cluster structure on A is Poisson-compatible iff all clusters are log-canonical 4

  13. Poisson polynomial algebra ( Poisson version of skew poly ring ) R = K [ x 1 ][ x 2 ; σ 2 , δ 2 ] p · · · [ x N ; σ N , δ N ] p : a polynomial ring K [ x 1 , . . . , x N ] with Poisson bracket ∋ { x k , r } = σ k ( r ) x k + δ k ( r ) for all r ∈ K [ x 1 , . . . , x k − 1 ] ( σ k = a Poisson derivation; suitable identities for δ k ) 5

  14. Poisson polynomial algebra ( Poisson version of skew poly ring ) R = K [ x 1 ][ x 2 ; σ 2 , δ 2 ] p · · · [ x N ; σ N , δ N ] p : a polynomial ring K [ x 1 , . . . , x N ] with Poisson bracket ∋ { x k , r } = σ k ( r ) x k + δ k ( r ) for all r ∈ K [ x 1 , . . . , x k − 1 ] ( σ k = a Poisson derivation; suitable identities for δ k ) R ( ↑ ) is a Poisson-nilpotent algebra iff ∃ K -torus H = ( K × ) r ∋ • H acts rationally on R by Poisson automorphisms • All x k are H -eigenvectors • All δ k are locally nilpotent • Each σ k given by action of h k ∈ Lie H , with h k · x k � = 0 5

  15. Poisson polynomial algebra ( Poisson version of skew poly ring ) R = K [ x 1 ][ x 2 ; σ 2 , δ 2 ] p · · · [ x N ; σ N , δ N ] p : a polynomial ring K [ x 1 , . . . , x N ] with Poisson bracket ∋ { x k , r } = σ k ( r ) x k + δ k ( r ) for all r ∈ K [ x 1 , . . . , x k − 1 ] ( σ k = a Poisson derivation; suitable identities for δ k ) R ( ↑ ) is a Poisson-nilpotent algebra iff ∃ K -torus H = ( K × ) r ∋ • H acts rationally on R by Poisson automorphisms • All x k are H -eigenvectors • All δ k are locally nilpotent • Each σ k given by action of h k ∈ Lie H , with h k · x k � = 0 E.G. R = O ( M m , n ( K )) with Sklyanin bracket, H = ( K × ) m + n , ( α 1 , . . . , α m , β 1 , . . . , β n ) · X ij = α i β j X ij 5

  16. In a Poisson algebra R : • Poisson ideal I ⊳ R : { R , I } ⊆ I • Poisson-normal element c ∈ R : { c , R } ⊆ cR • Poisson-prime element : Poisson-normal, prime element 6

  17. In a Poisson algebra R : • Poisson ideal I ⊳ R : { R , I } ⊆ I • Poisson-normal element c ∈ R : { c , R } ⊆ cR • Poisson-prime element : Poisson-normal, prime element Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H -Poisson-UFD : Each nonzero H -stable, prime, Poisson ideal of R contains a Poisson-prime H -eigenvector. 6

  18. In a Poisson algebra R : • Poisson ideal I ⊳ R : { R , I } ⊆ I • Poisson-normal element c ∈ R : { c , R } ⊆ cR • Poisson-prime element : Poisson-normal, prime element Thm. 1 [Yakimov-K.G.] Every Poisson-nilpotent algebra is an H -Poisson-UFD : Each nonzero H -stable, prime, Poisson ideal of R contains a Poisson-prime H -eigenvector. Consequence : All Poisson-normal H -eigenvectors in R are products of units and Poisson-prime H -eigenvectors, unique up to ordering and associates. 6

  19. Initial clusters : Thm 2. [Yakimov-K.G.] Let R = K [ x 1 , . . . , x N ] be a Poisson-nilpotent algebra. ∃ Poisson-prime H -eigenvectors y k ∈ K [ x 1 , . . . , x k ] ∀ k ∋ • All Poisson-prime H -eigenvectors in K [ x 1 , . . . , x k ] are among the scalar multiples of y 1 , . . . , y k . � � • ( y 1 , . . . , y N ) is log-canonical { y k , y l } ∈ Ky k y l . K [ y 1 , . . . , y N ] ⊆ R ⊆ K [ y ± 1 1 , . . . , y ± 1 • N ]. 7

  20. A Poisson-nilpotent algebra R = K [ x 1 , . . . , x N ] is symmetric if : • δ k ( x j ) ∈ K [ x j +1 , . . . , x k − 1 ] ∀ k > j • R = K [ x N , x N − 1 , . . . , x 1 ] is Poisson-nilpotent with • The same torus H • (a compatibility condition on scalars) 8

  21. A Poisson-nilpotent algebra R = K [ x 1 , . . . , x N ] is symmetric if : • δ k ( x j ) ∈ K [ x j +1 , . . . , x k − 1 ] ∀ k > j • R = K [ x N , x N − 1 , . . . , x 1 ] is Poisson-nilpotent with • The same torus H • (a compatibility condition on scalars) Ξ N := { τ ∈ S N | τ ([1 , k ]) = an interval , ∀ k ∈ [2 , N ] } 8

  22. A Poisson-nilpotent algebra R = K [ x 1 , . . . , x N ] is symmetric if : • δ k ( x j ) ∈ K [ x j +1 , . . . , x k − 1 ] ∀ k > j • R = K [ x N , x N − 1 , . . . , x 1 ] is Poisson-nilpotent with • The same torus H • (a compatibility condition on scalars) Ξ N := { τ ∈ S N | τ ([1 , k ]) = an interval , ∀ k ∈ [2 , N ] } If R is a symmetric Poisson-nilpotent algebra, then ∀ τ ∈ Ξ N : • R = K [ x τ (1) , x τ (2) , . . . , x τ ( N ) ] is Poisson-nilpotent. • The corresponding y -elements from Theorem 2 form a log-canonical cluster ( y τ, 1 , y τ, 2 , . . . , y τ, N ). 8

  23. Thm 3. [Yakimov-K.G.] Let R = K [ x 1 , . . . , x N ] be a symmetric Poisson-nilpotent algebra ( with mild conditions on scalars ). Set ex := { k ∈ [1 , N ] | y k is not Poisson-prime in R } . • R is a Poisson-compatible cluster algebra. • R = the corresponding upper cluster algebra. • R is generated by the cluster variables y τ, k for τ ∈ Ξ N and k ∈ [1 , N ]. Also true for R [ y − 1 • | k ∈ inv ], any inv ⊆ [1 , N ] \ ex . k 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend