qcd meets gravity 2019 ipam ucla differential equations
play

QCD meets gravity 2019 @ IPAM, UCLA Differential equations for - PowerPoint PPT Presentation

QCD meets gravity 2019 @ IPAM, UCLA Differential equations for one-loop string integrals Oliver Schlotterer (Uppsala University) based on 1908.09848, 1908.10830 with C. Mafra and 1911.03476 with J.


  1. QCD meets gravity 2019 @ IPAM, UCLA ——————— Differential equations for one-loop string integrals ——————— Oliver Schlotterer (Uppsala University) based on 1908.09848, 1908.10830 with C. Mafra and 1911.03476 with J. Gerken & A. Kleinschmidt 09.12.2019

  2. 1 Intro I – String perturbation theory String amplitudes ← → worldsheets as “fattened” Feynman diag’s loop order in perturbation theory = genus of the worldsheet α ′ → 0 or − → + + + point- particle limit or − → + + others α ′ → 0 � �� � � �� � � �� � open-string states: closed-string states: convenient organization of loop integrand “gravity = (gauge theory) 2 ” (BCJ) external gravitons non-abelian gauge bosons

  3. 2 Intro I – String perturbation theory String amplitudes ← → worldsheets as “fattened” Feynman diag’s loop order in perturbation theory = genus of the worldsheet α ′ → 0 or − → + + + point- particle limit or − → + + others α ′ → 0 � �� � � �� � � �� � open-string states: closed-string states: convenient organization of loop integrand “gravity = (gauge theory) 2 ” (BCJ) external gravitons non-abelian gauge bosons This talk: Study corrections to field theory ∼ inverse string tension α ′ = ⇒ rewarding laboratory for (elliptic) multiple zeta values & modular forms governed by differential equations similar to those of Feynman integrals

  4. 3 Intro I – String perturbation theory Map external states to punctures • on the worldsheet, e.g. • 1 open strings 1 4 conformal • 2 • 4 symmetry at tree level: 2 3 • 3 String amplitudes ( n points, g loop) ↔ integrals over moduli spaces M g ; n of n -punctured worldsheets of genus g (with / without boundary), � � � � 4 • 4 • 4 • • • 3 3 + + + . . . 1 • • • 1 • 1 3 • • • 2 2 2 M 0;4 M 1;4 M 2;4 M 3;4 α ′ -expansions ↔ generating series for (large classes of) periods of M g ; n .

  5. 4 Intro II – From worldsheet cartoons to integral bases Universal integrand: α ′ -dependent “Koba–Nielsen factor” = − α ′ 2 k i · k j “Koba–Nielsen” punctures z i =1 , 2 ,...,n n � � � KN τ g,n = exp s ij G g ( z i , z j , τ ) moduli τ @ genus g> 0 � �� � 1 ≤ i<j extra 1 2 for Green function, e.g. − log | z ij | 2 at tree level open strings At tree level: additionally, Parke–Taylor factors ∈ integrand 1 PT(1 , 2 , 3 , . . . , n ) = , z ij = z i − z j z 12 z 23 . . . z n − 1 ,n z n, 1 Closed-string tree amplitudes ↔ basis of integrals over spheres ( σ, ρ ∈ S n ) � d 2 z 1 . . . d 2 z n W tree ( σ (1 , 2 , . . . , n ) | ρ (1 , 2 , . . . , n )) = • vol SL 2 ( C ) • C • • × KN 0 ,n PT( σ (1 , 2 , . . . , n )) PT( ρ (1 , 2 , . . . , n ))

  6. 5 Intro II – From worldsheet cartoons to integral bases Goals of this talk: • propose genus-one analogues of Parke–Taylor factors ϕ (1 , 2 , . . . , n | τ ) ↔ function on torus with poles ( z 12 z 23 . . . z n − 1 ,n ) − 1 [Mafra, OS 1908.09848, 1908.10830] • conjectural basis of torus integrals in one-loop string amplitudes n d 2 z j � � W τ ( σ (1 , 2 , . . . , n ) | (1 , 2 , . . . , n )) = • • Im τ torus j =1 • × KN τ • 1 ,n ϕ ( σ (1 , 2 , . . . , n ) | τ ) ϕ ( ρ (1 , 2 , . . . , n ) | τ ) universal to bosonic, heterotic & supersymmetric theories. [Gerken, Kleinschmidt, OS 1911.03476] • homogeneous first-order differential equation w.r.t. τ for W τ

  7. 6 Motivation I – Double copy • At tree level: Parke–Taylor basis revealed double copy • • � � � � � � open super disk- or = ⊗ superstring Yang Mills Z -integrals • � d z 1 . . . d z n Z tree ( σ (cycle) | ρ (1 , 2 , . . . , n )) = vol SL 2 ( R ) KN 0 ,n PT( ρ (1 , 2 , . . . , n )) σ {−∞ <z 1 <z 2 <...<z n < ∞} • double copy manifest by KLT-type formula (field-theory kernel S [ α | β ]) � A tree A tree SYM (1 , α, n, n − 1) S [ α | β ] Z tree ( σ | 1 , β, n − 1 , n ) open ( σ ) = α,β ∈ S n − 3 [Mafra, OS, Stieberger 1106.2645 & Br¨ odel, OS, Stieberger 1304.7267] • both PT( . . . ) and A tree SYM ( . . . ) fall into ( n − 3)! bases � � integration by parts = ⇒ PT(1 , 2 , . . . , n ) & perm(2 , 3 , . . . , n − 2) .

  8. 7 Motivation I – Double copy One-loop generalization of ( n − 3)! Parke–Taylors: − → conjectural ( n − 1)! basis of Kronecker–Eisenstein integrands � � integration by parts = ⇒ ϕ (1 , 2 , 3 , . . . , n | τ ) & perm(2 , 3 , . . . , n ) . • • • open strings: induces basis of cylinder- & M¨ obius-strip integrals • • � • Z τ ( σ (cycle) | ρ (1 , 2 , . . . , n )) = KN τ 1 ,n ϕ ( ρ (1 , 2 , . . . , n ) | τ ) σ (cycle) • this talk: conjecturally Eduardo’s & Piotr’s talk: monodromy rel’s among cycles ( n − 1)! (twisted) cocycles • long-term goal: one-loop double-copy construction for various theories: � one-loop bosonic / he- � above one-loop � � � � some field = ⊗ theory Z τ -integrals terotic / SUSY strings

  9. 8 Motivation II – All-order α ′ -expansion Expanding Z tree , W tree in s ij = − α ′ 2 k i · k j ⇒ multiple zeta values (MZVs) ∞ � k − n 1 k − n 2 . . . k − n r ζ n 1 ,n 2 ,...,n r = , n r ≥ 2 r 1 2 0 <k 1 <k 2 <...<k r @ uniform transcendentality: weight n 1 + n 2 + . . . + n r matches order in α ′ [Terasoma 9908045; Broedel, OS, Stieberger, Terasoma 1304.7304] Analogous α ′ -expansion at genus one → functions of τ (integrate later) • • � • • elliptic MZVs [Enriquez 1301.3042] Z τ ( ·|· ) ← → = ⇒ • [Br¨ odel, Mafra, Matthes, OS 1412.5535] • modular (graph) forms � [D’Hoker, • • W τ ( ·|· ) ← → = ⇒ Green, G¨ urdogan, Vanhove 1512.06779] • • [D’Hoker, Green 1603.00839]

  10. 9 Motivation II – All-order α ′ -expansion Generate one-loop α ′ -expansion from homogeneous differential eq. in τ : 2 πi ∂ � ∂τ Z τ ( ∗| 1 , ρ (2 , 3 , . . . , n )) = D τ ( ρ | α ) Z τ ( ∗| 1 , α (2 , 3 , . . . , n )) α ∈ S n − 1 [Mafra, OS 1908.09848, 1908.10830] Clue: matrix D τ ( ρ | α ) acting on integrands is linear in α ′ = ⇒ solution via path-ordered exponential has uniform transcendentality! � � τ � d τ ′ � 2 πi D τ ′ ( ρ | α ) Z τ ( ∗| 1 , ρ ) = Z i ∞ ( ∗| 1 , α ) exp i ∞ Z tree at α ∈ S n − 1 � �� � generates eMZVs ( n +2) points σ + = 0 • σ n • • z n • z n τ → i ∞ . . . . ∼ . . . = . . σ 2 • • z 1 • z 1 • z 2 z 2 σ 1 • • • σ − = ∞

  11. 10 Motivation II – All-order α ′ -expansion Generate one-loop α ′ -expansion from homogeneous differential eq. in τ : 2 πi ∂ � ∂τ Z τ ( ∗| 1 , ρ (2 , 3 , . . . , n )) = D τ ( ρ | α ) Z τ ( ∗| 1 , α (2 , 3 , . . . , n )) α ∈ S n − 1 [Mafra, OS 1908.09848, 1908.10830] Clue: matrix D τ ( ρ | α ) acting on integrands is linear in α ′ = ⇒ solution via path-ordered exponential has uniform transcendentality! � � τ � d τ ′ � 2 πi D τ ′ ( ρ | α ) Z τ ( ∗| 1 , ρ ) = Z i ∞ ( ∗| 1 , α ) exp i ∞ Z tree at α ∈ S n − 1 � �� � generates eMZVs ( n +2) points • resembles ǫ -form of diff. eq. for Feynman integrals in D = 4 − 2 ǫ dim [e.g. Henn 1304.1806; Adams, Weinzierl 1802.05020] • work in progress: similar expansion techniques for closed-string W τ ( ·|· )

  12. 11 Outline: some more details on the results I. The Kronecker–Eisenstein integrands II. Open-string differential equations III. Closed-string integrals and their differential equations IV. Summary & Outlook [Mafra, OS 1908.09848 & 1908.10830, Gerken, Kleinschmidt, OS 1911.03476]

  13. 12 Results I – The Kronecker–Eisenstein integrands Parke–Taylor factors are related by partial fraction ( z ij = z i − z j ) 1 1 1 = + = ⇒ KK relations among PT( . . . ) z 12 z 13 z 12 z 23 z 13 z 32 Naive genus-1 generalization of z − 1 ij : odd Jacobi theta function � � 1 quasi-periodic completion ∂ z log θ 1 ( z ij | τ ) = + , w.r.t. z → z +1 & z → z + τ z ij ... more specifically: ∞ � θ 1 ( z | τ ) = 2 e iπτ/ 4 sin( πz ) � 1 − e 2 πinτ �� 1 − e 2 πi ( nτ + z ) �� 1 − e 2 πi ( nτ − z ) � n =1 Problem: quasi-periodic completion spoils partial fraction: ∂ z log θ 1 ( z 12 | τ ) ∂ z log θ 1 ( z 13 | τ ) � = ∂ z log θ 1 ( z 12 | τ ) ∂ z log θ 1 ( z 23 | τ ) + ∂ z log θ 1 ( z 13 | τ ) ∂ z log θ 1 ( z 32 | τ )

  14. 13 Results I – The Kronecker–Eisenstein integrands Parke–Taylor factors are related by partial fraction ( z ij = z i − z j ) 1 1 1 = + = ⇒ KK relations among PT( . . . ) z 12 z 13 z 12 z 23 z 13 z 32 genus-1 generalization of z − 1 ij : doubly-periodic Kronecker–Eisenstein series � θ ′ 1 (0 | τ ) θ 1 ( z + η | τ ) � 2 πiη Im z Ω( z, η, τ ) = exp Im τ θ 1 ( z | τ ) θ 1 ( η | τ ) Partial fraction generalizes to Fay identity involving auxiliary var’s η Ω( z 12 , η 2 , τ ) Ω( z 13 , η 3 , τ ) = Ω( z 12 , η 2 + η 3 , τ ) Ω( z 23 , η 3 , τ ) + Ω( z 13 , η 2 + η 3 , τ ) Ω( z 32 , η 2 , τ ) Kronecker–Eisenstein integrand at n points: n − 1 auxiliary var’s η 2 , η 3 , . . . , η n n � ϕ τ η (1 , 2 , . . . , n ) = Ω( z j − 1 ,j , η j + η j +1 + . . . + η n , τ ) � j =2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend