pvmd
play

PVMD Ren van Swaaij Delft University of Technology Learning - PowerPoint PPT Presentation

Heterojunctions PVMD Ren van Swaaij Delft University of Technology Learning objectives Why use a heterojunction? 2 Learning objectives Why use a heterojunction? Types of heterojunctions 3 Learning objectives Why use a


  1. Heterojunctions PVMD René van Swaaij Delft University of Technology

  2. Learning objectives • Why use a heterojunction? 2

  3. Learning objectives • Why use a heterojunction? • Types of heterojunctions 3

  4. Learning objectives • Why use a heterojunction? • Types of heterojunctions • Construct a band diagram of a heterojunction 4

  5. Why go for a heterojunction? Open circuit voltage 5

  6. Why go for a heterojunction? Open circuit voltage 6

  7. Why go for a heterojunction? Saturation current density Open circuit voltage 𝑟 ln 𝐾 ph oc = 𝑙𝑈 𝑊 + 1 𝐾 0 7

  8. Why go for a heterojunction? Saturation current density Open circuit voltage 𝑟 ln 𝐾 ph oc = 𝑙𝑈 𝑊 + 1 𝐾 0 8

  9. Why go for a heterojunction? Saturation current density Open circuit voltage 𝑟 ln 𝐾 ph oc = 𝑙𝑈 𝑊 + 1 𝐾 0 9

  10. Why go for a heterojunction? Saturation current density Open circuit voltage 𝑟 ln 𝐾 ph oc = 𝑙𝑈 𝑊 + 1 𝐾 0 is a material property 10

  11. Electron affinity E vac E F 11

  12. Electron affinity E vac q χ sem E F 12

  13. Electron affinity E vac q φ sem q χ sem E F 13

  14. Electron affinity E vac q φ sem q χ sem Semiconductor Electron affinity (V) Ge 4.13 Si 4.01 GaAs 4.07 E F AlAs 3.50 14

  15. Bandgap alignment: Straddling E vac q χ 1 q χ 2 E C2 E C1 E V1 E V2 15

  16. Bandgap alignment: Staggered E vac q χ 1 q χ 2 E C1 E C2 E V1 E V2 16

  17. Bandgap alignment: Broken gap E vac q χ 1 q χ 2 E C1 E C2 E V1 E V2 17

  18. Bandgap alignment E C2 E C1 Straddling E V1 E V2 E C1 E C2 Staggered E V1 E V2 E C1 E C2 Broken gap E V1 E V2 18

  19. Bandgap alignment E C2 E C1 Straddling E V1 E V2 E C1 E C2 Staggered E V1 E V2 E C1 E C2 Broken gap E V1 E V2 19

  20. Band diagram n type P type E CP E Cn E Cn E VP 20

  21. Band diagram n type P type E CP E Cn E gn E Cn E VP 21

  22. Band diagram n type P type E CP E Cn E gn E gP E Cn E VP 22

  23. Band diagram n type P type E CP E Cn E Fn E gn E gP E FP E Cn E VP 23

  24. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn E Fn E gn E gP E FP E Cn E VP 24

  25. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E gn E gP E FP E Cn Δ E V E VP 25

  26. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E Gn E gP E FP E Cn Δ E V E VP 26

  27. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E Gn E gP E FP E Cn Δ E V E VP 27

  28. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E Gn E gP E FP E Cn Δ E V E VP 28

  29. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E gn E gP E FP E Cn Δ E V E VP 29

  30. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E gn E gP E FP E Cn Δ E V E VP 30

  31. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E gn E gP E FP E Cn Δ E V E VP 31

  32. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn Δ E C E Fn E gn E gP E FP E Cn Δ E V E VP 32

  33. Electron affinity rule 33

  34. Electron affinity rule • Assumption : also the case when interface is formed 34

  35. Electron affinity rule • Assumption : also the case when interface is formed • In reality : mixing of materials / lattice mismatch 35

  36. Band diagram E vac q φ sP q χ P q φ sn q χ n E CP E Cn E Fn E gn E gP E FP E Cn E VP 36

  37. Band diagram q φ sP q χ P E vac E CP q φ sn q χ n E gP E Cn E Fn E FP E gn E VP E Vn 37

  38. Band diagram x 0 q φ sP q χ P E vac E CP q φ sn q χ n E gP E Cn E Fn E FP E gn E VP E Vn 38

  39. Band diagram x 0 q φ sP q χ P E vac E CP q φ sn q χ n E gP E Cn E Fn E FP E gn E VP E Vn 39

  40. Band diagram x 0 q φ sP q χ P E vac E CP q φ sn q χ n Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 40

  41. Band diagram x 0 q φ sP q χ P E vac E CP q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 41

  42. Band diagram x 0 qV biP q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 42

  43. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 43

  44. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 44

  45. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 45

  46. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 46

  47. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E vP Δ E V E Vn 47

  48. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q  sn q  n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E vP Δ E V E Vn 48

  49. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q  sn q  n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E vP Δ E V E Vn 49

  50. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q  sn q  n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E vP Δ E V E Vn 50

  51. Electrostatic characteristics 51

  52. Electrostatic characteristics 52

  53. Electrostatic characteristics 53

  54. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 54

  55. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 55

  56. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 56

  57. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 57

  58. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 58

  59. Band diagram x 0 qV biP qV bi q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 59

  60. Band diagram x 0 qV biP qV bi Different transport characteristics q φ sP q χ P E vac E CP qV bin q φ sn q χ n qV biP qV bin Δ E C E gP E Cn E Fn E FP E gn E VP Δ E V E Vn 60

  61. Summary • Use heterojunction to change V oc 61

  62. Summary • Use heterojunction to change V oc • Discussed three types of band alignment 62

  63. Summary • Use heterojunction to change V oc • Discussed three types of band alignment • Constructed band diagram 63

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend