project ieee p802 15 working group for
play

Project: IEEE P802.15 Working Group for Wireless Personal Area - PowerPoint PPT Presentation

May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: CSEM FM-UWB proposal presentation Date Submitted: 4 May, 2009 Source: John F.M. Gerrits & John


  1. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: CSEM FM-UWB proposal presentation Date Submitted: 4 May, 2009 Source: John F.M. Gerrits & John R. Farserotu CSEM Systems Engineering Jaquet Droz 1, CH2002 Neuchatel, Switzerland Voice: +41 32 720 56 52, FAX: +41 32 720 57 20, E-Mail: john.gerrits@csem.ch This document is CSEM’s response to the Call For Proposal from the IEEE P802.15 Re: Task Group 6 on BAN. Abstract: This document presents FM-UWB: a constant envelope LDR UWB air interface for short range BAN applications. Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. Submission Slide 1 John F.M. Gerrits / John R. Farserotu, CSEM

  2. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 FM-UWB Alliance CSEM, Neuchâtel, Switzerland John F.M. Gerrits, Dr. John R. Farserotu, Jérôme Rousselot NXP Semiconductors, Eindhoven, The Netherlands Gerrit van Veenendaal ACORDE TECHNOLOGIES S.A., Santander, Spain Dr. Manuel Lobeira TU Delft, Delft, The Netherlands Prof. John R. Long Submission Slide 2 John F.M. Gerrits / John R. Farserotu, CSEM

  3. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Presentation Outline 1. Wearable MBAN Applications & Requirements 2. Regulations, Coexistence, SAR 3. QoS, Robustness 4. Hardware Prototype 5. Medium Access Control Submission Slide 3 John F.M. Gerrits / John R. Farserotu, CSEM

  4. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Wearable Medical BAN applications • Bio-Medical – MBAN EEG Electroencephalography – ECG Electrocardiogram – EMG Electromyography (muscular) – Blood pressure – Blood SpO2 – Blood pH – Glucose sensor – Respiration – Temperature – Fall detection • Sports performance – Distance – Speed – Posture (Body Position) – Sports training aid Submission Slide 4 John F.M. Gerrits / John R. Farserotu, CSEM

  5. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Key Wearable BAN requirements Parameter Medical BAN requirement Coexistence and Good (low interference to other systems, high Robustness tolerance to interference) SAR Regulations < 1.6 mW (US) / < 20 mW (EU) QoS (Medical BAN) PER < 10%, delay < 125 ms Data Rates 10 kbps to 10 Mbps (LDR medical / MDR consumer) Power Consumption Low, autonomy > 1 year (e.g. with 1% duty cycle, MAC sleep modes, 500 mAh battery) Reliability Robust to multipath interference, > 99% link success/availability Insertion/de-insertion < 3 seconds Transmission range > 3 m Submission Slide 5 John F.M. Gerrits / John R. Farserotu, CSEM

  6. doc.: IEEE 802.15-09-0277-00-0006 Advantages of UWB • Low radiated power • Low PSD, low interference, low SAR • High co-existence with existing 802.x standards • Real potential for low power consumption • Large bandwidth worldwide • Spectrum is worldwide available • Robust to multipath and fast varying channels • Flexible, scalable (e.g. data rates, users) • Low complexity HW/SW solutions in advanced development Submission

  7. doc.: IEEE 802.15-09-0277-00-0006 Complexity vs. Data Rate Complexity / Power Coherent Rake IR-UWB EQ IR-UWB Non coherent IR-UWB Coherent IR-UWB FM-UWB Non coherent IR-UWB LDR MDR HDR Data Rate Submission

  8. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Outline 1. Wearable MBAN Applications & Requirements 2. Regulations, Coexistence, SAR 3. QoS, Robustness 4. Hardware Prototype 5. Medium Access Control Submission Slide 8 John F.M. Gerrits / John R. Farserotu, CSEM

  9. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Transmitter architecture R = 30 - 250 kbps BW: 60 - 500 kHz > 500 MHz freq: baseband 1 - 2 MHz 6 - 9 GHz 50 m W RF Sub FSK Data FM d(t) m(t) V(t) carrier RF Subcarrier RF Oscillator Oscillator Modulation Spreading An analog FM signal may have any bandwidth independent of modulation frequency or bit rate. This is analog spread spectrum. Subcarrier frequency = analog spreading code. Submission Slide 9 John F.M. Gerrits / John R. Farserotu, CSEM

  10. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Multiple access techniques: Subcarrier and RF FDMA Sub Data d(t) m(t) V(t) RF carrier Subcarrier RF Oscillator Oscillator Channel RF center frequency Subcarrier Subcarrier frequency H 1 6464 MHz 1 1.00 MHz H 2 6976 MHz 2 1.25 MHz H 3 7488 MHz 3 1.50 MHz H 4 8000 MHz 4 1.75 MHz H 5 8512 MHz Submission Slide 10 John F.M. Gerrits / John R. Farserotu, CSEM

  11. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 FM-UWB transmitter signal • Flat power spectral density • Steep spectral roll-off • Good coexistence • SAR compliant Submission Slide 11 John F.M. Gerrits / John R. Farserotu, CSEM

  12. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 FM-UWB has been FCC pre-certified Submission Slide 12 John F.M. Gerrits / John R. Farserotu, CSEM

  13. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Outline 1. Wearable MBAN Applications & Requirements 2. Regulations, Coexistence, SAR 3. QoS, Link Margin, Robustness 4. Hardware Prototype 5. Medium Access Control Submission Slide 13 John F.M. Gerrits / John R. Farserotu, CSEM

  14. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Receiver architecture BW: > 500 MHz 60 - 500 kHz 30 - 250 kbps freq: 6 - 9 GHz 1 - 4 MHz baseband Sub-carrier Data d(t) Wideband Sub-carrier RF LNA FM Filter & Demodulator Demodulator FSK Instantaneous demodulation despreading Submission Slide 14 John F.M. Gerrits / John R. Farserotu, CSEM

  15. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Receiver processing gain Only noise/interference in the subcarrier banwidth is taken into account. This bandwidth reduction after the wideband FM demodulator yields real processing gain:      B 2 f       RF RF G 10 log 10 log         PdB 10 10     B 1 R SUB SUB G PdB = 30 dB @ R = 250 kbps G PdB = 39 dB @ R = 31.25 kbps • narrowband • UWB Processing gain mitigates interference • multiple-access Submission Slide 15 John F.M. Gerrits / John R. Farserotu, CSEM

  16. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Robustness to frequency-selective multipath Body surface – external Body surface – body surface CM4 channel: CM3 channel: [ICUWB 2007] BRF = 500 MHz) Submission Slide 16 John F.M. Gerrits / John R. Farserotu, CSEM

  17. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Requirements for 99 % availability: • 2.8 dB of fading margin in the CM3 channel • 1.7 dB of fading margin in the CM4 channel. (20 dB fading margin in a narrowband system) Submission Slide 17 John F.M. Gerrits / John R. Farserotu, CSEM

  18. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Robustness to narrowband interference Interferer FM-UWB In-band narrowband interference up to 15 dB stronger than the wanted signal is tolerated. Submission Slide 18 John F.M. Gerrits / John R. Farserotu, CSEM

  19. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Received signal at 3 meters (CM4). πd     4   P dBm P dBm 20 log RX TX 10 λ d = 3m , f = 7.5 GHz , l = 4 cm P RX (3m) = -74 dBm Submission Slide 19 John F.M. Gerrits / John R. Farserotu, CSEM

  20. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Receiver sensitivity B RF = 500 MHz NF RX = 5 dB P N = -174 +10log 10 (500x10 6 )+5 = -82 dBm SNR MIN = -7 dB Theoretical receiver sensitivity -89 dBm Implementation loss and fading margin P RX (3m) = -74 dBm +15 dB of theoretical link margin 4 dB implementation losses 3 dB fading margin for multipath - 8 dB positive margin = link closed Submission Slide 20 John F.M. Gerrits / John R. Farserotu, CSEM

  21. May, 2009 doc.: IEEE 802.15-09-0277-00-0006 Link budget summary Parameter Symbol Value Units Comments Tx bandwidth B RF 500 MHz Nominal UWB signal bandwidth Tx power P TX -14.3 dBm < 40 mW (max power limit) Tx antenna gain G TX 0.0 dBi EIRP (peak) EIRP -14.3 dBm Peak EIRP Center frequency f C 7.5 GHz High band operation (7.25-8.5 GHz) Distance D 3.0 m 3 meters required for BAN Free space path loss Lp -59.5 dB Rx antenna gain G RX 0.0 dBi Rx power P RX -73.8 dBm Noise Figure NF 5.0 dB Equivalent system noise: 627 K Noise power density N0 -169.0 dBm/Hz Noise power N -82.0 dBm 500 MHz RF bandwidth Data rate R 250 kbps High end for wearable Medical BAN Required subcarrier SNR, BFSK, BER ≤ 10 -6 Subcarrier SNR SNR SC 13.4 dB RF SNR SNR RF -7.0 dB Required RF SNR, SNR conversion [EURASIP] Implementation losses Li 4.0 dB Miscellaneous losses + interference Link margin M 3.0 dB Multipath fading, (CM3 / CM4 channels Remaining margin Mrem 8.2 dB Positive margin remaining indicates link closed Submission Slide 21 John F.M. Gerrits / John R. Farserotu, CSEM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend