print version
play

Print version Updated: 25 February 2020 Lecture #20 Dissolved - PowerPoint PPT Presentation

Print version Updated: 25 February 2020 Lecture #20 Dissolved Carbon Dioxide: Closed Systems II & Alkalinity (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 5.4 & 7 David Reckhow CEE 680 #20 1 Alkalinity Northampton MA 13


  1. Print version Updated: 25 February 2020 Lecture #20 Dissolved Carbon Dioxide: Closed Systems II & Alkalinity (Stumm & Morgan, Chapt.4 ) Benjamin; Chapter 5.4 & 7 David Reckhow CEE 680 #20 1

  2. Alkalinity  Northampton MA 13 mg/L as CaCO 3  From Homework #1 Constituent Concentration Units 0.26 meq/L Turbidity 0.59 NTU TDS 29 mg/L Color 10 Color units Odor 1 TON 260 µeq/L pH 6.75 Log units Total Alkalinity 13 mg-CaCO 3 /L Total Hardness 20 mg-CaCO 3 /L Calcium 6.7 mg/L Magnesium 0.89 mg/L Aluminum <0.05 mg/L Potassium <1 mg/L Sodium 5.0 mg/L Iron <0.05 mg/L Manganese 0.016 mg/L Sulfate 5.9 mg/L Chloride 3.0 mg/L Silver <0.005 mg/L Copper <0.01 mg/L Zinc <0.05 mg/L TOC 3 mg/L https://www.usgs.gov/special-topic/water-science- school/science/alkalinity-and-water?qt- David Reckhow CEE 680 #20 2 science_center_objects=0#qt-science_center_objects

  3.  alk David Reckhow CEE 680 #20 3

  4. Alkalinity Test V t  Titrate with a strong acid (e.g., HCl) - → H 2 CO 3 H + + HCO 3 - -2 → H 2 CO 3 2H + + CO 3 - H 2 CO 3 H 2 CO 3 HCO 3 - HCO 3 - H 2 CO 3 HCO 3 - David Reckhow CEE 680 #20 4

  5. Alkalinity  Alkalinity: ability of a water to neutralize strong acids  a form of Acid Neutralizing Capacity (ANC)  Interpretation in most natural waters: -2 ] + [OH - ] - [H + ]  Alk tot = [HCO 3 - ] + 2[CO 3  Net deficiency of protons with respect to CO 2  Alk = 0 for a pure solution of carbon dioxide; therefore, CO 2 does not add alkalinity: CO 2 (aq)+ OH - = HCO 3 -  Alk tot = ( α 1 + 2 α 2 )C T + [OH - ] - [H + ]  Measurement by titration with a strong acid back to the pH of a pure CO 2 solution (about 4.5) David Reckhow CEE 680 #20 5

  6. Acidity  Acidity: abilility of a water to neutralize strong bases  a form of Base Neutralizing Capacity (BNC)  Interpretation in most natural waters - ] + [H + ] - [OH - ]  Acy tot = 2[H 2 CO 3 ] + [HCO 3  Net excess of protons with respect to CO 3 -2  Acy = 0 for a pure solution of carbonate; therefore, Na 2 CO 2 does not add acidity: Na 2 CO 2 + H + = HCO 3 - + 2Na +  Acy tot = (2 α 0 + α 1 )C T + [H + ] - [OH - ]  Measurement by titration with a strong base back to the -2 solution (about 10.7) pH of a pure CO 3 David Reckhow CEE 680 #20 6

  7. Acidity & Alkalinity (cont.)  Summation  Alk tot + Acy tot -2 ] + [OH - ] - [H + ]) + (2[H 2 CO 3 ] + [HCO 3  = ([HCO 3 - ] + 2[CO 3 - ] + [H + ] - [OH - ])  = 2[H 2 CO 3 ] + 2[HCO 3 - ] + 2[CO 3 -2 ]  = 2C T  therefore, you can determine C T from the two titrations  Since Alkalinity is not affected by addition of CO 2 it is considered a conservative substance in “open systems”  e.g., loss of CO 2 to the atmosphere does not affect alkalinity either David Reckhow CEE 680 #20 7

  8. Other Alkalinity Species  In sea water we use:  Alk tot = [HCO 3 - ] + 2[CO 3 -2 ] + [B(OH) 4 ] + [HPO 4 -2 ] + [H 3 SiO 4 ] + [MgOH - ] + [OH - ] - [H + ] Chemical Species pKa Average Equilibria Conc. (M) species which 1x10-3 CO3-2 + 2H+ = HCO3- + H+ = H2CO3 Carbonates 10.3/6.4 may contribute 2x10-4 H3SiO4 + H+ = H4SiO4 Silicates 9.8 1x10-4 R-COO- + H+ = R-COOH to alkalinity Organics 3 to 10 1x10-6 B(OH)4- + H+ = B(OH)3 + H2O Borates 9.2 2x10-6 NH4OH + H+ = NH4+ + H2O Ammonia 9.2 2x10-6 Fe(OH)4- + 3H+ = Fe(OH)2+ + H+ = See also, Table Iron 6.0/4.6 Fe(OH)+ 2 IX in Faust & 2x10-6 Al(OH)4- + 2H+ = Al(OH)3 + H+ = Al(OH)2+ Aluminum 8.0/5.7 Aly, 1981 Al(OH)2+ + 2H+ = Al(OH)+ 2 + H+ = Al+ 3 4.3/5.0 7x10-7 HPO4-2 + H+ = H2PO4- Phosphates 7.2 2x10-7 OH- + H+ = H2O Hydroxide 14.0 1x10-7 Cu(OH)3- + 3H+ = Cu(OH)+ + H+ = Cu+ + H2O Copper 9.8/7.3 2x10-8 Ni(OH)2 + H+ = NiOH+ Nickel 6.9 1x10-8 Cd(OH)+ + H+ = Cd+ 2 + H2O Cadmium 7.6 1x10-8 Pb(OH)+ + H+ = Pb+ 2 + H2O Lead 6.2 HS- + H+ = H2S Sulfides 7.0 variable Zn(OH)2+ 2H+ = Zn(OH)+ + H3O+ = Zn+ 2+ Zinc 6.1/9.0 variable 2H2O David Reckhow CEE 680 #20 8

  9. Methyl Orange O  used as a colorimetric CH 3 (-) O S Yellow N N N indicator of the final CH O 3 alkalinity titration H+ endpoint  changes color at about pH O H 4.5 CH 3 (-) O S N N N  where all carbonates are as (+) CH 3 O H 2 CO 3 Red  f=2 O H CH 3 (-) O S N N N (+) CH 3 O David Reckhow CEE 680 #20 9

  10. Phenolphthalein  used as a colorimetric indicator of alkalinity and acidity first endpoint  changes color at about pH 8.3  pH signifies loss of OH - and where all carbonates are as HCO 3 -  at f=1, and g=1 (-) O O OH HO OH - + 2 H O C C OH 2 O O C C O(-) O(-) Red Colorless David Reckhow CEE 680 #20 10

  11. Alkalinity procedures (cont.)  calculations  Equ t = Equ s  V t N t = V s N s  N s = V t N t /V s  Sliding endpoint depending on concentration Alkalinity Potentiometric Colorimetric (mg/L) (pH) (from greenish blue to) 30 4.9 light blue & lavender 150 4.6 light pink 500 4.3 red David Reckhow CEE 680 #20 11

  12. Examples  Titrate 1 L of each with 0.100 M HCl  Determine the pH at various points in the titration  Solution #1  1.5 mM of NaOH  Solution #2  1.5 mM of NaOH, plus 1.0 mM NaOCl  Solution #3  1.5 mM of NaOH, plus 1.0 mM Na 2 CO 3 David Reckhow CEE 680 #20 12

  13. Acid Titration Curve for a Water Containing Hydroxide and Carbonate Alkalinity 12 H++OH-=H2O 11 H++C O3 -2=HCO3 - 10 9 B 3 1 st Equivalence Point Β 8 A 1 H++HCO3 pH 7 Α -=H2CO3 6 2 nd Equivalence Point 5 4 3 V ph V mo 2 0 5 10 15 20 25 30 35 40 45 Titrant Volume (mL) David Reckhow CEE 680 #20 13

  14. Alkalinity: Chemical Interpretation  At the phenolphthalein endpoint (Alk ph ), the following has occurred:  H + + OH - → H 2 O -2 → HCO 3  H + + CO 3 -  Then at the methyl orange endpoint (Alk mo ): - → H 2 CO 3 ↔ CO 2 + H 2 O  H + + HCO 3  Units:  equ/L  or more commonly, mg/L as CaCO 3  1 equ/L = 50,000 mg/L as CaCO 3 David Reckhow CEE 680 #20 14

  15. Types of Alkalinity  Speciation based on carbonate system  Alk OH = 50,000[OH - ] = 50,000(10 pHi-14 )  Alk HCO3 = 50,000[HCO 3 - ]  Alk CO3 = 100,000[CO 3 -2 ] David Reckhow CEE 680 #20 15

  16. Scheme for Alk determination  If Alk ph > 0.5* Alk mo  Alk OH = 2*Alk ph - Alk mo  Alk CO3 = 2(Alk mo - Alk ph )  Alk HCO3 = 0  If Alk ph ≤ 0.5* Alk mo  Alk OH = 0  Alk CO3 = 2*Alk ph  Alk HCO3 = Alk mo - 2*Alk ph  Where:  Alk ph = 50,000V ph N t /V s  Alk mo = 50,000V mo N t /V s David Reckhow CEE 680 #20 16

  17. Carbonate System (C T =10 -3 ) OH - 0 H + CO 3 -2 -2 H 2 CO 3 HCO 3 - Log H+ -4 Log H2CO3 Log C -6 Log HCO3- -8 Log CO3-2 -10 Log OH- -12 -14 0 2 4 6 8 10 12 14 pH David Reckhow CEE 680 #14 17

  18. Acid Titration Curve for a Water Containing Hydroxide and Carbonate Alkalinity 12 H++OH-=H2O 11 H++C O3 -2=HCO3 - 10 9 B 1 st Equivalence Point Β 8 A H++HCO3 pH 7 Α -=H2CO3 6 2 nd Equivalence Point 5 4 3 V ph V mo 2 0 5 10 15 20 25 30 35 40 45 Titrant Volume (mL) David Reckhow CEE 680 #20 18

  19. Acid Titration Curve for a Water Containing Carbonate and Bicarbonate Alkalinity 12 -2] + Z[HCO3 -] Y[CO3 11 10 C 9 1 st Equivalence Point Β -] 8 (Y + Z)[HCO3 pH 7 Α 6 (Y + Z)[H2CO3] 2 nd Equivalence Point 5 4 (Y + Z)Vs/Nt (Y)Vs/Nt 3 V ph V mo 2 0 5 10 15 20 25 30 35 40 45 Titrant Volume (mL) David Reckhow CEE 680 #20 19

  20. Alkalinity & titrations (cont.)  Relationship between chemistry, titration and buffer intensity  See Stumm & Morgan, Figure 4.1 (pg. 154)  Impact of C T on titration endpoints  Refer to Benjamin, Figure 5.10  Also: Stumm & Morgan, Figure 4.3 (pg.157) and Pankow’s Figure 9.2 (pg. 169)  Conservation of Alkalinity  Stumm & Morgan, Figures 4.7 and 4.10 (pgs. 167 and 177) David Reckhow CEE 680 #20 20

  21. Pure H 2 CO 3 : f=0 PBE Solutions 0 OH - H + -1 -2 - -2 HCO 3 CO 3 -3 -4 -5 -6 Log C -7 -8 -9 -10 -11 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 David Reckhow CEE 680 #20 21 pH

  22. - : f=1 Pure HCO 3 PBE Solutions  Solution to PBE shifts 0 OH - H + from H2CO3-CO3-2 -1 -2 intersection (blue H 2 CO 3 -2 CO 3 -3 circles) to H2CO3-OH- -4 intersection (green -5 circles) as CT drops -6 Log C -7 -8 -9 -10 -11 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 David Reckhow CEE 680 #20 22 pH

  23. -2 : f=2 Pure CO 3 PBE Solutions 0 OH - H + -1 -2 - H 2 CO 3 HCO 3 -3 -4 -5 -6 Log C -7 -8 -9 -10 -11 -12 -13 -14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 David Reckhow CEE 680 #20 pH 23

  24. Stumm & Morgan Figure 4.3; pg. 157 David Reckhow CEE 680 #20 24

  25.  To next lecture David Reckhow CEE 680 #20 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend