primary data reduction and analysis
play

Primary data reduction and analysis Al Kikhney, EMBL Hamburg - PowerPoint PPT Presentation

Primary data reduction and analysis Al Kikhney, EMBL Hamburg Outline 3D 2D 1D Experiment design and data reduction Exposure time Background subtraction Dilution series Overall parameters: Guinier


  1. Primary data reduction and analysis Al Kikhney, EMBL Hamburg

  2. Outline • 3D → 2D → 1D • Experiment design and data reduction • Exposure time • Background subtraction • Dilution series • Overall parameters: • Guinier analysis: R g , I(0), molecular mass • Volume • p(r), D max

  3. SAXS experiment solution X-ray → X-ray detector solvent • Few kDa to GDa • Monodisperse and homogeneous • Concentration: 0.5– 10 mg/ml • Amount: 10 – 100 μ l

  4. 2D → 1D Log I(s) a.u. 10 5 10 4 10 3 10 2 10 1 s, nm - 1

  5. Log I(s) a.u. 10 5 10 4 Normalization • Transmitted beam 10 3 • Exposure time 10 2 10 1 s, nm - 1

  6. Notations and units solution X-ray → 2θ s X-ray detector

  7. Notations and units solution X-ray → 2θ s I(s), a.u. |s| = 4π sinθ / λ 2θ – scattering angle – wavelength λ s – scattering vector – intensity I(s) s, nm - 1

  8. Notations and units I(s), cm -1 |s| = 4π sinθ / λ 2θ – scattering angle – wavelength λ s – scattering vector – intensity I(s) s, nm - 1

  9. Notations and units I(q), a.u. |q| = 4π sinθ / λ 2θ – scattering angle λ – wavelength q, nm - 1

  10. Notations and units I(s), a.u. |s| = 4π sinθ / λ 2θ – scattering angle λ – wavelength 1 2 3 s, nm - 1

  11. Notations and units I(s), a.u. |s| = 4π sinθ / λ 2θ – scattering angle λ – wavelength 0.1 0.2 0.3 s, Å - 1

  12. Notations and units I(s), a.u. |s| = 4π sinθ / λ 2θ – scattering angle λ – wavelength s, nm - 1

  13. I(s) Exposure time 0.05 second 0.2 second 0.8 second s, nm - 1

  14. I(s) Exposure time 0.05 second 0.2 second RADIATION 0.8 second DAMAGE! 1.6 second s, nm - 1

  15. I(s) Multiple exposures frame 1 s, nm - 1

  16. I(s) Multiple exposures frame 1 frame 2 s, nm - 1

  17. I(s) Multiple exposures average s, nm - 1

  18. I(s) Multiple exposures frame 1 frame 10 – discard s, nm - 1

  19. Sample and buffer I(s) 3.2 mg/ml lysozyme + buffer + cell s, nm - 1

  20. Sample and buffer I(s) 3.2 mg/ml lysozyme s, nm - 1

  21. Background subtraction Solution minus Solvent I(s) s, nm - 1

  22. Background subtraction Solution minus Solvent I(s) Normalization against: • Concentration s, nm - 1

  23. Logarithmic plot Log I(s) s, nm - 1

  24. Log I(s) Dilution series 2 mg/ml s, nm - 1

  25. Log I(s) Dilution series 8 mg/ml s, nm - 1

  26. Log I(s) Dilution series 32 mg/ml s, nm - 1

  27. Log I(s) Dilution series 2 mg/ml 32 mg/ml s, nm - 1

  28. Inter-particle interactions No interactions

  29. Inter-particle interactions Attractive interactions Repulsive interactions

  30. Log I(s) Merging data s, nm - 1

  31. Log I(s) Merging data s, nm - 1

  32. Log I(s) Merging data s, nm - 1

  33. Data analysis

  34. Shape Log I(s) 100 nm 3 s

  35. Size 200 nm 3 Log I(s) 100 nm 3 50 nm 3 25 nm 3

  36. Radius of gyration (R g ) Definition Measure for the overall size of a macromolecule Average of square center-of-mass distances in the molecule weighted by the scattering length density

  37. 2.2 nm Radius of gyration (R g ) 3.6 nm 6 nm 100 nm 3 6.4 nm 3.4 nm 4.8 nm

  38. Radius of gyration (R g ) Guinier approximation: I(s) ≈ I(0) exp( s 2 R g 2 / -3) s ≲ 1/ R g André Guinier 1911 - 2000

  39. Radius of gyration (R g ) Guinier plot Ln I(s) s 2

  40. Radius of gyration (R g ) Guinier plot Ln I(s) s 2

  41. Radius of gyration (R g ) Guinier plot Ln I(s) Ln I(0) y = ax + b R g = √ -3a sR g < 1.0~1.3 s 2

  42. Radius of gyration (R g ) Guinier plot Ln I(s) R g ± stdev Forward scattering I(0) Data quality Data range s 2

  43. Sample quality Log I(s) s, 1/nm

  44. Aggregation Monodisperse sample

  45. Aggregation Aggregated sample

  46. Logarithmic plot Log I(s) s, 1/nm

  47. Guinier plot Ln I(s) s 2

  48. Guinier plot Ln I(s) R g = 2.0 nm s min R g = 0.52 s max R g = 1.26 < 1.3 s 2 0.63 nm - 1 0.26 nm - 1

  49. Guinier plot Ln I(s) R g = 2.3 nm s min R g = 1.01 s max R g = 1.45 > 1.3 s 2 0.63 nm - 1 0.44 nm - 1

  50. Molecular mass Log I(s), a.u. Guinier approximation Log I(0) apo Log I(0) lys lysozyme apoferritin s, nm - 1

  51. I(0) and Molecular Mass MM sample I(0) sample = MM BSA I(0) BSA MM sample = I(0) sample ∙ MM BSA / I(0) BSA R g = 3.1 nm BSA I(0) = 11.7 a.u. MM BSA = 66 kDa R g = 1.46 nm R g = 6.81 nm I(0) = 2.68 a.u. I(0) = 79.45 a.u. MM = 15.1 kDa MM = 450 kDa

  52. Porod volume Excluded volume of the hydrated particle π 2 2 I ( 0 ) = V P ∞ ∞ ∫ ∫ − 2 2 [ I ( s ) I ( s ) K s ] ds s ds 4 0 0

  53. Porod volume Excluded volume of the hydrated particle π 2 2 I ( 0 ) = V P ∞ ∫ − 2 [ I ( s ) K ] s ds 4 0 K 4 is a constant determined to ensure the asymptotical intensity decay proportional to s -4 at higher angles following the Porod's law for homogeneous particles

  54. Porod law Excluded volume of the hydrated particle 21 nm 3 974 nm 3 ~13 kDa ~610 kDa (?!)

  55. Distance distribution function

  56. Distance distribution function γ (r) 1 0 r, nm

  57. Distance distribution function γ (r) 1 0 r, nm

  58. Distance distribution function γ (r) 1 p(r) = r 2 γ (r) 0 r, nm

  59. Distance distribution function p(r) p(r) = r 2 γ (r) 0 r, nm

  60. Distance distribution function p(r) 100 nm 3 r, nm 6 nm D max = 6 nm

  61. Distance distribution function p(r) r, nm

  62. Distance distribution function p(r) r, nm

  63. Distance distribution function Log I(s) p(r) s, nm - 1 r, nm

  64. Log I(s) p(r) D ∞ sin( sr ) max 2 2 r s I ( s ) sin( sr ) ∫ ∫ = π = I ( s ) 4 p ( r ) dr p ( r ) ds π 2 sr sr 2 0 0 s, nm - 1 r, nm

  65. p(r) plot Distance distribution function D max D max p(r) p(r) r, nm r, nm

  66. Data quality D max s min ≤ π /D max I(s) p(r) r, nm s, 1/nm s min

  67. Data range “Resolution”, nm 2.00 1.00 0.67 0.50 0.33 Log I(s) 8 Atomic 7 structure Shape 6 Fold Size 5 0 5 10 15 s, nm - 1 s min < π /D max

  68. Beamline P12 Data range can be adjusted by changing the wavelength λ or the sample-detector distance

  69. Beamline P12 Detector closer to the sample – collect wider angles (for smaller particles)

  70. Beamline P12 Detector further from the sample – collect smaller angles (for larger particles)

  71. Data reduction and analysis steps Radial averaging Normalization Radiation damage check X 1s 2 s 3s Background subtraction Merge multiple concentrations 0.5 1.0 2.0 R g , molecular weight D max , p ( r ) p(r) Porod volume Ab initio shape determination p(r) …

  72. Thank you! www.sasbdb.org www.saxier.org/forum

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend