adaptive control
play

Adaptive Control Chapter 5: Recursive plant model identification in - PowerPoint PPT Presentation

Adaptive Control Chapter 5: Recursive plant model identification in open loop 1 Adaptive Control Landau, Lozano, MSaad, Karimi Chapter 5: Recursive plant model identification in open loop 2 Adaptive Control Landau, Lozano,


  1. Adaptive Control Chapter 5: Recursive plant model identification in open loop 1 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  2. Chapter 5: Recursive plant model identification in open loop 2 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  3. Why to review “open loop system identification” ? • We need information upon the complexity of the plant model and its basic dynamical features for building an “adaptive control scheme” •Recursive identification algorithms are used in indirect adaptive control •It is an introduction to “identification in closed loop “ which is used for “Iterative identification in closed loop and controller redesign” (an adaptation technique) 3 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  4. OUTLINE Open loop system identification -Data acquisition -Model complexity -Parameter estimation -Validation 4 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  5. Objective of system identification (for control) To extract from experimental data a dynamic model of the plant which will allow to design a controller in order to match the control specifications 5 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  6. System Identification Methodology I/0 Data Acquisition under anExperimental Protocol Model Complexity Estimation ( or Selection ) Choice of the Noise Model Parameter Estimation Model Validation No Yes Control Design 6 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  7. I/O Data Acqusition Signal : a P.R.B.S sequence Magnitude : few % of the input operating point f s = = = f ( 1 / p ) f ; p 1 , 2 , 3 ( sampling frequency ) Clock frequency : clock s Length : − = = − ( 2 N 1 1 ) pT ; N number of cells , T 1 / f s s s NpT Largest pulse : s Length : < allowed duration for the experiment ≥ Largest pulse : (rise time) t R P.R.B.S . NpT s t r 7 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  8. An I/O File inertia d.c. motor . u(t) power M amplifier tacho generator y(t) filter TG 8 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  9. Spectral density of a P.R.B.S. N=8 a) p = 1 10 0 p=1 -10 dB f clock =f s -20 -30 -40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5 b) p = 2 10 0 p=2 -10 dB f clock =f s /2 -20 -30 -40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5 c) p = 3 10 0 p=3 -10 dB f clock =f s /3 -20 -30 -40 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5 f/f s 9 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  10. Data pre-processing The I/O data files should be centered The use of non centered data files can cause serious errors 10 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  11. Complexity Estimation from I/O Data Objective : To get a good estimation of the model complexity ( n , n , d ) A B directly from noisy data [ ] = + = = + n max( n , n d ) n ˆ min CJ min J ( n ˆ ) S ( n ˆ , N ) A B opt n n ˆ ˆ minimum CJ (n) complexity S(n,N) penalty term J (n) error term (should be unbiased) 0 n opt n To get a good order estimation, J should tend to the value for → ∞ noisy free data when (use of instrumental variables) N 11 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  12. Parameter Estimation Discretized plant u(t) y(t) DAC + Plant ADC ZOH + ε (t) Adjustable - y(t) discrete-time model Parameter Estimated ˆ t θ estimation ( ) model algorithm parameters batch (non recursive) Parameter estimation alg.: recursive It does not exists a unique algorithm providing good results in all the situations encountered in practice 12 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  13. Plant Model u y − − − − − q d B ( q 1 ) q d 1 B * ( q 1 ) = = G − G ( q 1 ) − − A ( q 1 ) A ( q 1 ) = + + + = + A ( q − ) 1 a q − ... a q − 1 q − A * ( q − ) 1 1 n 1 1 A 1 n A = + + = − − − − − B ( q 1 ) b q 1 ... b q n q 1 B * ( q 1 ) B 1 n B + = − + − = θ T ψ − − y ( t 1 ) A * ( q 1 ) y ( t ) B * ( q 1 ) u ( t d ) ( t ) [ ] T θ = a ,... a , b ,..., b 1 n 1 n A B [ ] ψ = − − − + − − − + ( t ) y ( t )... y ( t n 1 ), u ( t d )... u ( t d n 1 ) T A B 13 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  14. Recursive Parameter Estimation Methods Plant Model + = − + − = θ T ψ − − y ( t 1 ) A * ( q 1 ) y ( t ) B * ( q 1 ) u ( t d ) ( t ) θ − ψ − parameter vector ; measuremen t vector Estimated model ˆ ° + = θ φ y ˆ ( t 1 ) T ( t ) ( t ) ˆ θ − φ − estimated parameter vector ; observatio n vector Prediction error (a priori) ˆ ε + = + − θ Φ = + − + 0 ( t 1 ) y ( t 1 ) T ( t ) ( t ) y ( t 1 ) y ˆ 0 ( t 1 ) Parameter adaptation algorithm (P.A.A.) ˆ ˆ θ + = θ + + Φ ε + ( t 1 ) ( t ) F ( t 1 ) ( t ) 0 ( t 1 ) + = λ + λ Φ Φ − − F 1 ( t 1 ) ( t ) F 1 ( t ) ( t ) ( t ) T ( t ) 1 2 < λ ≤ ≤ λ < 0 ( t ) 1 ; 0 ( t ) 2 1 2 [ ] Φ = φ ( t ) f ( t ) regressor vector 14 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  15. Recursive Least Squares Plant Model + = − + − = θ T ψ − − y ( t 1 ) A * ( q 1 ) y ( t ) B * ( q 1 ) u ( t d ) ( t ) θ − ψ − parameter vector ; measuremen t vector Estimated model ˆ ° + = θ φ y ( t 1 ) ( t ) ( t ) ˆ T ˆ − − θ φ estimated parameter vector ; observatio n vector [ ] T θ = a ,... a , b ,..., b 1 n 1 n A B [ ] ; φ = ψ = − − − + − − − + ( t ) ( t ) y ( t )... y ( t n 1 ), u ( t d )... u ( t d n 1 ) T T A B Disturbance Regressor vector u(t) y(t) 0 t Φ = φ = ψ Plant ( t ) ( t ) ( t ) ε ( ) + y(t-1) P.A.A q − 1 - > y°(t) See functions: rls.sci(.m) Adjustable Predictor on the book website 15 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  16. Effect of stochastic disturbances (noise measurement) •Identification algorithms operates at low signal to noise ratio (in order to disturb as little as possible a plant under operation) •This often causes an error on estimated parameters called “bias” •The reason for the existence of many identification algorithms is that it does not exist an unique algorithm which gives unbiased estimates in all practical situations 16 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  17. Non recursive least squares N ∑ ˆ θ = φ − ( N ) F ( N ) y ( i ) ( i 1 ) (*) = i 1 N ∑ − = φ − φ − 1 T F ( N ) ( i 1 ) ( i 1 ) = i 1 See functions: nrls.sci(.m) on the book website 17 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  18. Bias in Least Squares Parameter Estimation In the presence of measurement noise the estimation of parameters is “biased” when using least squares algorithm Plant output in the presence of noise: + = θ T ψ + + = θ T φ + + (**) y ( t 1 ) ( t ) w ( t 1 ) ( t ) w ( t 1 ) Bias for the least squares algorithm (replace y in (*) by (**) ) : − 1 ⎡ ⎤ ⎡ ⎤ 1 N 1 N ˆ T θ = θ + φ − φ − φ − ∑ ∑ ( N ) ( t 1 ) ( t 1 ) ( t 1 ) w ( t ) ⎢ ⎥ ⎢ ⎥ ⎣ N ⎦ ⎣ N ⎦ = = t 1 t 1 Condition for ⎡ − ⎤ N 1 1 ∑ { } asymptotic φ − = φ − = (***) ⎢ ⎥ lim ( t 1 ) w ( t ) E ( t 1 ) w ( t ) 0 unbiased N → ∞ ⎢ ⎥ N ⎣ ⎦ = i 1 estimation regressor (observation) vector noise It is necessary that φ (t-1 )(the regressor) and w(t) be uncorrelated For the least squares this implies : w(t) = e(t) (white noise). For all the other cases the estimated parameters will be biased 18 Adaptive Control – Landau, Lozano, M’Saad, Karimi

  19. Unbiased estimation in the presence of noise ˆ Suppose : and we want that the algorithm leaves unchanged this value θ = θ + θ = θ T φ ε + θ = + − + θ = + y ( t 1 ) ( t ) ( t 1 ) y ( t 1 ) y ( t 1 ) w ( t 1 ) ˆ ˆ Necessary condition for unbiased estimation: ⎡ ⎤ − N 1 1 ∑ { } (****) φ − θ ε θ = φ − θ ε θ = ⎢ ⎥ lim ( t 1 , ) ( t , ) E ( t 1 , ) ( t , ) 0 N → ∞ ⎢ ⎥ N ⎣ ⎦ = i 1 necessary { } ˆ φ ε + = θ ≡ θ E ( t ) ( t 1 ) 0 f or To eliminate the bias : condition One modifies the LS algorithm in order to obtain: ˆ ε (t+1) as a white noise for: θ = θ or: ˆ uncorrelated φ (t ) and ε (t+1) for: θ = θ 19 Adaptive Control – Landau, Lozano, M’Saad, Karimi

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend