precision tests of sm at low energy hadronic structure
play

Precision tests of SM at low energy: Hadronic structure corrections - PowerPoint PPT Presentation

Precision tests of SM at low energy: Hadronic structure corrections Misha Gorshteyn - Universitt Mainz 56th International Winter Meeting on Nuclear Physics - Bormio - Italia Work being done together with Chuck Horowitz Michael Ramsey-Musolf


  1. Precision tests of SM at low energy: Hadronic structure corrections Misha Gorshteyn - Universität Mainz 56th International Winter Meeting on Nuclear Physics - Bormio - Italia

  2. Work being done together with Chuck Horowitz Michael Ramsey-Musolf Hubert Spiesberger Xilin Zhang Chien-Yeah Seng Hiren Patel

  3. Precision tests of SM at low energies - basis • Goal: measure parameters of the Standard Model to high precision Confront with precision calculations in SM Constrain/discover New Physics via deviations • SM parameters: charges, masses, mixing • At low energy quarks are bound in hadrons - how can we access their fundamental properties through hadronic mess? • A charge associated with a conserved current is not renormalized by strong interaction - the charge of a composite = ∑ charges of constituents • Strong interaction may modify observables at NLO in α em / π ≈ 2 ∙ 10 -3 • Experiment + pure EW RC - accuracy at 10 -4 level or better • In many low-energy tests hadron structure effects is the main limitation!

  4. Precision measurements of weak mixing angle Weak mixing angle - mixing of the NC gauge fields WMA determines the relative strength of the weak NC vs. e.-m. interaction Q p =+1 Q pW =1-4sin 2 θ W 4

  5. Precision measurements of weak mixing angle Weak mixing angle - mixing of the NC gauge fields WMA determines the relative strength of the weak NC vs. e.-m. interaction Q p =+1 Q pW =1-4sin 2 θ W Atomic PV Møller scattering Colliders e + q γ Z e e Z e γ Z e e - - q e Purely leptonic Z-pole measurement Coherent quarks in a nucleus e-DIS @ JLab, EIC ν -DIS @ NuTEV P2 MESA @ Mainz ν μ , ν Q-Weak @ JLab e e e e γ Z W Z γ Z p p n n Coherent quarks in p Incoherent ν -q scattering Incoherent e-q scattering 4

  6. Weak charge of the proton from PVES Elastic scattering of polarized electrons off unpolarized protons Q 2 at low momentum transfer � = − G F Q 2 A P V = σ → − σ ← Q p W + Q 2 B ( Q 2 ) ⇥ ⇤ √ σ → + σ ← 4 2 πα � This Experiment QWEAK Data Rotated to the Forward-Angle Limit A/A ���� Q ���������� B( , � =0) ����� HAPPEX 0.4 � ���� SAMPLE ���� PVA4 ���� G0 2 � Q SM (prediction) � 0.3 Effects of hadronic structure � 2 (size, spin, strangeness) kinematically suppressed Q 0.2 � Existing hadronic data used to obtain B and δ B W p � � � 0.1 0 � � 0.0 � 0.0 0.1 0.2 0.3 0.4 0.5 0.6 Go down to Q 2 ≤ 0.03 GeV 2 2 2 [GeV] Q Unprecedented challenge: tiny asymmetry to 1-2 % δ sin 2 θ W = 1 − 4 sin 2 θ W δ Q p W The reward: Q Wp = 1-4sin 2 θ W ~ 0.07 in SM sin 2 θ W 4 sin 2 θ W Q p W 5

  7. SM running of the weak mixing angle � 0.245 Erler, Ramsey-Musolf QW (p) NuTeV QW (e) 0.24 P2@MESA Qweak Moller Universal quantum corrections SOLID 0.235 can be absorbed into running, QW (APV ) LEP1 scale-dependent sin 2 θ W ( μ ) ATLAS eDIS Tevatron 0.23 SLD 3 % SM uncertainty: few x 10 -4 sin 2 θ W (Q) MS CMS 0.225 hs 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 Q [GeV] 6

  8. SM running of the weak mixing angle � 0.245 Erler, Ramsey-Musolf QW (p) NuTeV QW (e) 0.24 P2@MESA Qweak Moller Universal quantum corrections SOLID 0.235 can be absorbed into running, QW (APV ) � LEP1 scale-dependent sin 2 θ W ( μ ) �� ATLAS eDIS Tevatron 0.23 SLD 3 % SM uncertainty: few x 10 -4 sin 2 θ W (Q) MS CMS 0.225 hs �� 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 Q [GeV] Universal running - clean prediction of SM SM uncertainty = thickness of the black line (10 ) Deviation anywhere - BSM signal �� Sensitivity to light Z Marciano Mixing with New Extra Z Dark photon or Contact interaction Fermions Dark Z Heavy BSM reach: up to 49 TeV t: Sensitivity to light dark gauge sector � Complementary to colliders � 6 V

  9. Electroweak boxes: non-universal corrections Hadronic effects under control = (1 + ∆ ρ + ∆ e )(1 − 4 sin 2 ˆ Q p , 1 � loop θ W + ∆ 0 e ) + ⇤ W W + ⇤ ZZ + ⇤ γ Z W Marciano, Sirlin ’83,84; Erler, Musolf ’05 Non-universal correction - depends on kinematics and hadronic structure Marciano and Sirlin: γ Z-box mainly universal (large log) same for PV in atoms and e-scattering 0.0037±0.0004 (5.3 ± 0.6%) Residual dependence on hadronic scale Λ Until recently: 1-loop SM result Q pW = 0.0713 ± 0.0008 This formulation was used to plan Qweak @ JLab 1.165 GeV beam; Q 2 =0.03 GeV 2 Combined Theo+Exp. uncertainty - 4% Δ sin 2 θ W /sin 2 θ W = 0.3% 7

  10. Electroweak boxes: non-universal corrections γ Z-box from forward dispersion relation q Compute the imaginary part first p Real part from unitarity + analyticity + symmetries W 2 =(p+q) 2 MG, Horowitz ’09; MG, Horowitz, Ramsey-Musolf ‘11 Q 2 =-q 2 >0 Lower blob: γ Z-interference structure functions p µ ˆ p ν + i ✏ µ ναβ p α q β + ˆ Im W µ ν = − ˆ g µ ν F γ Z ( p · q ) F γ Z F γ Z 1 2 3 2( p · q ) Sum rule for the γ Z-box correction Known kinematical functions Z ∞ Z ∞ dW 2 h i ⇤ γ Z ( E ) = α A ( E, W, Q 2 ) F γ Z + B ( E, W, Q 2 ) F γ Z + C ( E, W, Q 2 ) F γ Z dQ 2 1 2 3 π 0 thr Inelastic PVES data Model-independent (if data available); E-dependence calculable in each exp. kinematics

  11. Input to the dispersion integral No or very little inelastic PVES data available; Use electromagnetic data + isospin symmetry to obtain the input in the dispersion integral All kinematics contribute; not all contribute equally. Main support in the “shadow region” - Main contribution: W < 5 GeV, Q ² < 2 GeV ² 100 1 1 0 0 . 0 . 0 > < x x : S : S I D I D E E C DIS V N I E T L C A A V R F 10 F I D 2 ) 2 (GeV GVDM Resonances GVDM Q 1 RESONANCE VDM VDM Regge 0.1 REGGE 1 10 100 W (GeV)

  12. Energy-dependent γ Z-box Q p Reference value: 1-loop SM W ( SM ) = 0 . 0713 ± 0 . 0008 MG, Horowitz, PRL 102 (2009) 091806; 7.6% of Q Wp correction in Q-Weak kinematics Nagata, Yang, Kao, PRC 79 (2009) 062501; - missed in the original analysis Tjon, Blunden, Melnitchouk, PRC 79 (2009) 055201; Zhou, Nagata, Yang, Kao, PRC 81 (2010) 035208; ⇤ γ Z ( E = 1 . 165 GeV) = (5 . 4 ± 2 . 0) × 10 − 3 Sibirtsev, Blunden, Melnitchouk, PRD 82 (2010) 013011; Rislow, Carlson, PRD 83 (2011) 113007; MG, Horowitz, Ramsey-Musolf, PRC 84 (2011) 015502; Blunden, Melnitchouk, Thomas, PRL 107 (2011) 081801; Rislow, Carlson PRD 85 (2012) 073002; Blunden, Melnitchouk, Thomas, PRL 109 (2012) 262301; Hall et al., PRD 88 (2013) 013011; Rislow, Carlson, PRD 88 (2013) 013018; Hall et al., PLB 731 (2014) 287; MG, Zhang, PLB 747 (2015) 305; Hall et al., PLB 753 (2016) 221; MG, Spiesberger, Zhang, PLB 752 (2016) 135; QWEAK collaboration recently finalized their result: Q pW = 0.0716 ± 0.0048 The error mostly experimental (6% rather than planned 4%) Steep energy dependence observed - furnished strong motivation for P2 @ MESA • ⇤ γ Z ( E = 0 . 155 GeV) = (1 . 1 ± 0 . 3) × 10 − 3 10

  13. P2 experiment @ MESA MESA accelerator new, Mainz Energy Recovering Acc. Beam Dump Magnetic spectrometer MAGIX Parity violation experiment P2 P2 detector

  14. P2 experiment @ MESA 155 MeV E beam ¯ θ f 35 � 200 days of data; 20 � δθ f 150 µA beam 6 ⇥ 10 � 3 (GeV/c) 2 h Q 2 i L, δθ f 85% polarization h A exp i � 39 . 94 ppb ( ∆ A exp ) T otal 0 . 68 ppb (1 . 70 %) ( ∆ A exp ) Statistics 0 . 51 ppb (1 . 28 %) ( ∆ A exp ) P olarization 0 . 21 ppb (0 . 53 %) ( ∆ A exp ) Apparative 0 . 10 ppb (0 . 25 %) ( ∆ A exp ) ⇤ γ Z 0 . 08 ppb (0 . 20 %) Additionally: A PV measurement on C-12 ( ∆ A exp ) nucl. F F 0 . 29 ppb (0 . 72 %) Asymmetry ~ 4sin 2 θ W - no gain in precision s 2 h ˆ Z i 0 . 23116 but 15 times larger than p; 3 . 34 ⇥ 10 � 4 (0 . 14 %) s 2 ( ∆ ˆ Z ) T otal Cross sections 36 times larger than p; 2 . 68 ⇥ 10 � 4 (0 . 12 %) s 2 ( ∆ ˆ Z ) Statistics 2500h data - 0.3% on sin 2 θ W possible! 1 . 01 ⇥ 10 � 4 (0 . 04 %) s 2 ( ∆ ˆ Z ) P olarization 5 . 06 ⇥ 10 � 5 (0 . 02 %) s 2 ( ∆ ˆ Z ) Apparative 4 . 16 ⇥ 10 � 5 (0 . 02 %) s 2 ( ∆ ˆ Z ) ⇤ γ Z 1 . 42 ⇥ 10 � 4 (0 . 06 %) s 2 Production: 2019-2020 ( ∆ ˆ Z ) nucl. F F

  15. PVeS Experiment Summary % Pioneering 0 0 % 1 Strange Form Factor (1998-2009) 0 1 -4 S.M. Study (2003-2005) 10 JLab 2010-2012 Future E122 % 1 -5 PVDIS-6 10 G0 Mainz-Be H-I SAMPLE SOLID -6 10 A4 G0 ) PV MIT-12C A4 H-III (A A4 H-He -7 δ 10 H-II PREX-I E158 PREX-II -8 10 Qweak MESA-12C -9 10 Moller MESA-P2 -10 10 -8 -6 -5 -3 -7 -4 10 10 10 10 10 10 A PV

  16. P2 @ MESA to test Standard Model Impact of Qweak and MESA on effec5ve e-q operators: √ 2) C q q γ µ q L = − ( G F / 1 ¯ e γ µ γ 5 e ¯

  17. P2 @ MESA to test Standard Model Impact of Qweak and MESA on effec5ve e-q operators: √ 2) C q q γ µ q L = − ( G F / 1 ¯ e γ µ γ 5 e ¯ QWEAK

  18. P2 @ MESA to test Standard Model Impact of Qweak and MESA on effec5ve e-q operators: √ 2) C q q γ µ q L = − ( G F / 1 ¯ e γ µ γ 5 e ¯ MESA QWEAK

  19. P2 @ MESA to test Standard Model Impact of Qweak and MESA on effec5ve e-q operators: √ MESA - C12 2) C q q γ µ q L = − ( G F / 1 ¯ e γ µ γ 5 e ¯ MESA MESA - C12: a 0.3% measurement of A PV QWEAK = 0.3% meas. of sin 2 θ W Access the isoscalar combina5on of C 1 ’s

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend