new cp and t tests in low energy hadronic processes
play

New CP (and T) Tests in Low-Energy Hadronic Processes Susan Gardner - PowerPoint PPT Presentation

New CP (and T) Tests in Low-Energy Hadronic Processes Susan Gardner Department of Physics and Astronomy University of Kentucky Lexington, KY 40506 gardner@pa.uky.edu Known Flavor and CP Violation are CKM-like [ 2013 update (th+exp) of Laiho,


  1. New CP (and T) Tests in Low-Energy Hadronic Processes Susan Gardner Department of Physics and Astronomy University of Kentucky Lexington, KY 40506 gardner@pa.uky.edu

  2. Known Flavor and CP Violation are CKM-like [ 2013 update (th+exp) of Laiho, Lunghi, van de Water, arXiv:0910.2928 ] S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 2

  3. What’s Next?! We can i) continue to test the relationships that a single CP-violating parameter entails to higher precision – as well as – ii) continue to make “null” tests. e.g., EDMs, as they are inaccessibly small in the (C)KM model. Beta-decay correlations also give T-odd “null” tests. Today we consider... i) “True” tests of T in the B-meson system and their translation to “Flying Φ ’s” ii) A new CP test in η → π + π − π 0 decay iii) A triple-product momentum correlation (T odd, P odd but no spin) in radiative β decay S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 3

  4. Direct Observation of T Violation in the B System BaBar, 2012: S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 4

  5. Interpreting T Violation in the B System [Bernabeu et al., 2012; Appelbaum, 2013; Dadisman, SG, Yan, arXiv:1409.6801] Γ ′ ( ℓ − X ) ⊥ , J /ψ K S − Γ ′ ( J /ψ K L ) ⊥ ,ℓ + X A T = . Γ ′ ( ℓ − X ) ⊥ , J /ψ K S + Γ ′ ( J /ψ K L ) ⊥ ,ℓ + X Defining normalized rates as per Γ ′ ( f 1 ) ⊥ , f 2 ≡ Γ ( f 1 ) ⊥ , f 2 / ( N f 1 N f 2 ) . The decay rate to f 1 and then f 2 is Γ ( f 1 ) ⊥ , f 2 and is thus given by N 1 N 2 e − Γ( t 1 + t 2 ) [ 1 + C ( 1 ) ⊥ , 2 cos (∆ m B t ) Γ ( f 1 ) ⊥ , f 2 = + S ( 1 ) ⊥ , 2 sin (∆ m B t )] , with Γ ≡ (Γ H + Γ L ) / 2, ∆ m B ≡ m H − m L , t = t 2 − t 1 ≥ 0, S ( 1 ) ⊥ , 2 ≡ C 1 S 2 − C 2 S 1 , and C ( 1 ) ⊥ , 2 ≡ − [ C 2 C 1 + S 2 S 1 ] . C f ≡ ( 1 − | λ f | 2 ) / ( 1 + | λ f | 2 ) S f ≡ 2 ℑ ( λ f ) / ( 1 + | λ f | 2 ) , where λ f ≡ ( q / p )(¯ A f / A f ) and A f ≡ A ( B 0 → f ) , ¯ B 0 → f ) , N f ≡ A 2 A f ≡ A (¯ f + ¯ A 2 f . Since we neglect wrong-sign semileptonic decay, C ℓ + X = − C ℓ − X = 1. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 5

  6. Interpreting T Violation in the B System + + - J/Ψ K S J/Ψ K S - a) B 0 B B B 0 l l + J/Ψ K S (→ π + π ) + - J/Ψ K S - b) l B 0 B B B 0 l B B 0 + - l J/Ψ K L (→ π + π π 0 ) t S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 6

  7. Interpreting T Violation in the B System + + l B 0 - f ' B f B - B 0 l o o B 0 B + - l f e t S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 7

  8. Interpreting T Violation in the B System Γ ′ ( f o ) ⊥ ,ℓ − X − Γ ′ ( ℓ + X ) ⊥ , f e A o + ≡ T Γ ′ ( f o ) ⊥ ,ℓ − X + Γ ′ ( ℓ + X ) ⊥ , f e ( C e + C o ) cos (∆ m B t ) + ( S o − S e ) sin (∆ m B t ) = 2 + ( C o − C e ) cos (∆ m B t ) + ( S o + S e ) sin (∆ m B t ) , Γ ′ ( ℓ − X ) ⊥ , f o − Γ ′ ( f e ) ⊥ ,ℓ + X A o − ≡ T Γ ′ ( ℓ − X ) ⊥ , f o + Γ ′ ( f e ) ⊥ ,ℓ + X ( C e + C o ) cos (∆ m B t ) − ( S o − S e ) sin (∆ m B t ) = 2 + ( C o − C e ) cos (∆ m B t ) − ( S o + S e ) sin (∆ m B t ) Γ ′ ( f e ) ⊥ ,ℓ − X − Γ ′ ( ℓ + X ) ⊥ , f o A e + ≡ T Γ ′ ( f e ) ⊥ ,ℓ − X + Γ ′ ( ℓ + X ) ⊥ , f o ( C e + C o ) cos (∆ m B t ) − ( S o − S e ) sin (∆ m B t ) = 2 − ( C o − C e ) cos (∆ m B t ) + ( S o + S e ) sin (∆ m B t ) Γ ′ ( ℓ − X ) ⊥ , f e − Γ ′ ( f o ) ⊥ ,ℓ + X A e − ≡ T Γ ′ ( ℓ − X ) ⊥ , f e + Γ ′ ( f o ) ⊥ ,ℓ + X ( C e + C o ) cos (∆ m B t ) + ( S o − S e ) sin (∆ m B t ) = 2 − ( C o − C e ) cos (∆ m B t ) − ( S o + S e ) sin (∆ m B t ) , S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 8

  9. (More) CP Violation Without Spin CP-odd Observables Enter Dalitz studies of η ( ′ ) → π + π − π 0 . Connects to studies in untagged B-meson decays — breaking the mirror symmetry of the Dalitz plot breaks CP! [SG, SG and Jusak Tandean, 2003] T-odd Correlations Such can only be motion-reversal odd; they are not true tests of T. In β decay, the mimicking FSI are electromagnetic and can be computed. In radiative β -decay we can form a T-odd correlation from momenta alone: p γ · ( p e × p ν ) , so that we probe new physics sources which are not constrained by EDM limits. [SG and Daheng He, 2012, 2013] Here we probe CP violation under the CPT theorem. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 9

  10. Dalitz Studies of CP Violation in η ( ′ ) → π + π − π 0 25 20 s 0 - = 0 s + 2 ) s +0 (GeV 15 10 5 0 0 5 10 15 20 25 2 ) s -0 (GeV The failure of mirror symmetry in the Dalitz plot in η or η ′ decay (or of the untagged decay rate in B , ¯ B or D , ¯ D decay) to π + π − π 0 signals the presence of CP violation. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 10

  11. Anatomy of CP Violation in Γ( M C =+ → π + π − π 0 ) The breaking of mirror symmetry can be realized in two disjoint ways. To see this, let � π 0 � � π 0 � � π + � � π − � � � � � CP = − , CP = η π , Working in the rest frame of the two pions coupled to angular momentum l , � � � � l π 3 ( p ′ ) l l π 3 ( p ′ ) l � � � � P π 1 ( p ) π 2 ( − p ) = − π 1 ( p ) π 2 ( − p ) , � � � � � � = ( − 1 ) l � � π + ( p ) π − ( − p ) l π 0 ( p ′ ) l π − ( − p ) π + ( p ) l π 0 ( p ′ ) l � � � � C . � � � � It follows that � = ( − 1 ) l + 1 � � � π + ( p ) π − ( − p ) l π 0 ( p ′ ) l π − ( − p ) π + ( p ) l π 0 ( p ) l � � � � CP , � � � � � � � � π − ( p ) π 0 ( − p ) l π + ( p ′ ) l π + ( p ) π 0 ( − p ) � � � � l π − ( p ′ ) l = − CP . � � � � The resonance content of the Dalitz plot distinguishes the various 3 π final states. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 11

  12. Anatomy of CP Violation in Γ( M C =+ → π + π − π 0 ) C-odd, P-even This can be generated by s − p interference of � � final states of 0 − meson decay. π + ( p ) π − ( − p ) l π 0 ( p ′ ) l � � � � It is linear in a CP-violating parameter. This contribution cannot be generated by ¯ θ QCD ! “C violation” [Lee and Wolfenstein, 1965; Lee, 1965, Nauenberg, 1965; Bernstein, Feinberg, and Lee, 1965] C-even, P-odd This can be generated by the interference of amplitudes which � � � � π − ( p ) π 0 ( − p ) l π + ( p ′ ) l π + ( p ) π 0 ( − p ) � � � � l π − ( p ′ ) l distinguish from � � � � as in, e.g., B → ρ + π − vs. B → ρ − π + . “CP-enantiomers” [SG, 2003] This possibility is not accessible in η → π + π − π 0 decay (but in η ′ decay, yes). Thus a “left-right” asymmetry in η → π + π − π 0 decay tests C-invariance, too. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 12

  13. Searching for a Broken Mirror The population asymmetry (or left-right asymmetry) across the mirror line of the Dalitz plot is � � � � A 3 π ≡ Γ 3 π s + 0 > s − 0 − Γ 3 π s + 0 < s − 0 � � � � Γ 3 π s + 0 > s − 0 + Γ 3 π s + 0 < s − 0 Currently, in η → π + π − π 0 : A LR = (+ 0 . 09 ± 0 . 10 + 0 . 09 − 0 . 14 ) × 10 − 2 [Ambrosino et al. [KLOE], 2008] The background reduction associated with boosted η decay at the JEF should help control systematics. B → ρ ± π ∓ has also been reported by A “charge asymmetry” in B , ¯ BaBar. To understand what we constrain we must turn to an operator analysis. This is in progress. To illustrate, we review recent work in the analysis of β -decay.... S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 13

  14. T-odd Correlations In neutron β decay, triple product correlations are spin dependent . Major experimental efforts have recently been concluded. D term [Mumm et al., 2011; Chupp et al., 2012] D probes J · ( p e × p ν ) and is T-odd, P-even. D = [ − 0 . 94 ± 1 . 89(stat) ± 0 . 97(sys) ] × 10 − 4 (best ever!) D FSI is well-known (N 3 LO) and some 10 × smaller. [Callan and Treiman, 1967; Ando et al., 2009] D limits the phase of C A / C V ... R term [Kozela et al., 2009; Kozela et al., 2012] Here the transverse components of the electron polarization are measured. R probes J · ( p e × ˆ σ ) and is T-odd, P-odd. N probes J · ˆ σ and gives a non-zero check. R = 0 . 004 ± 0 . 012(stat) ± 0 . 005(sys) R limits the imaginary parts of scalar, tensor interactions... In contrast, in radiative β -decay one can form a T-odd correlation from momenta alone, p γ · ( p e × p ν ) , so that the spin does not enter. S. Gardner (Univ. of Kentucky) New Tests of CP (and T) T Tests, ACFI, November, 2014 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend