recent cleo results on tau hadronic decays
play

Recent CLEO Results on Tau Hadronic Decays J.E. Duboscq Cornell - PowerPoint PPT Presentation

Recent CLEO Results on Tau Hadronic Decays J.E. Duboscq Cornell University Tau04, Nara Japan CLEO Hadronic Tau Results The CLEO3 Detector Tau Decays to 3 Charged Hadrons + PRL90:181802,2003 Structure of KK and Wess-Zumino


  1. Recent CLEO Results on Tau Hadronic Decays J.E. Duboscq Cornell University Tau04, Nara Japan

  2. CLEO Hadronic Tau Results The CLEO3 Detector Tau Decays to 3 Charged Hadrons + ν PRL90:181802,2003 Structure of KKπ and Wess-Zumino PRL92:232001,2004 JED Tau04 2

  3. The CLEO3 Detector CLEOIII 2230104-001 CL EO III Solenoid Coil Barrel Calorimeter RICH Drift Chamber Silicon / beampipe SC Quadrupole Pylon 14007 01-002 Endcap SC Calorimeter Quadrupoles Rare Earth Iron Quadrupole Polepiece Magnet Barrel Muon JED Tau04 3 Iron Chambers

  4. Tau to 3h ± + ν τ - → h - h + h - ν decays predominantly to pions K - π + π - final state important to strange spectral function, m s , V us K - K + π - state probes Wess-Zumino term K - K + K - state as yet unobserved The Data Sample: 3x10 6 tau pairs at Υ (4s) produced at CESR τ-→ h-h+h- ν JED Tau04 4

  5. Hadronic Particle ID 33 5 010 3 - 001 Combine RICH and dE/dx 100 Efficiency (%) 8 0 6 0 Use DATA D* → Dπ, D → 4 0 K Kπ to obtain PID ε and 2 0 2 5 fake rates Fak e Rat e (%) K f ak e s 2 0 f ak e s K 1 5 Cross check with wrong 10 5 sign K in τ - → K + π - π + ν 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 search Mom en t um ( G e V/ c) (Use only loose dE/dx for π in KKπ - KKK not a background !) τ-→ h-h+h- ν JED Tau04 5

  6. Event Selection Select 1 vs 3 tracks (using Thrust) Require e/ µ / ρ / π tag Reject events w/ extra showers (3h π 0 rejection) Missing momentum, E vis cuts reject 2 γ background K s 0 rejection for K ππ mode Use KORALB, JETSET, GEANT for efficiency (use data for PID) τ-→ h-h+h- ν JED Tau04 6

  7. 3h Results Mode Data τ bgd qq bgd ε (%) 33 5 0 1 0 3 - 002 1 00 πππ 43543 3207±57 152±12 10.27±0.08 πππ KK π 2000 ( a ) ( c ) K ππ 3454 1475±38 57±8 11.63±0.12 5 0 KK π 932 86±9 19±4 12.48±0.11 1 000 Ev e nt s / 20 (MeV/c 2 ) KKK 12 4±2 0.4±0.6 9.43±0.10 0 0 ( b ) ( d ) Largest τ bgd from other KKK K ππ D a t a a ll M C τ→ 3h( π 0 ) ν modes B ac kgrou n d 2 1 2 5 C o nt i n uu m B ac kgrou n d Use MC to get feed-across 0 0 For KKK use data to get feed- 0 . 5 0 . 9 1 . 3 1 . 4 1 . 6 1 . 7 1 . 8 ( 3 h) Mass (GeV/c 2 ) I across KK π Substructure tuned to fit data τ - → h-h+h- ν JED Tau04 7

  8. 3h Substructure Plots 33 5 0 1 0 3 - 00 3 6000 πππ ππ ( a ) D a t a Very Good Data a ll M C 4 000 B ac kgrou n d MC agreement 2 000 C o nt i n uu m Ev e nt s / 2 0 (MeV/c 2 ) B ac kgrou n d 0 2 5 0 KK π ( b ) ( c ) K π Used 3 π , K ππ KK 5 0 1 2 5 tuning from TAU02 0 0 K ππ 2 00 ( e ) ( d ) ππ K π Tuned KK π 2 5 0 1 00 substructure: Less 0 0 1 . 1 0 .3 0 . 6 1 . 0 1 . 4 0 . 7 h+h Mass (GeV/c 2 ) K*, more ρ’, no ρ’’ I τ-→ h-h+h- ν JED Tau04 8

  9. 3h Systematics 3% PID systematic 2% each systematic for Lumi, σ ( ττ ), track finding 1% each syst for τ backgrounds, CC cuts PID Fake rate syst 0.1%/9%/2%/12% MC/Data studies, τ - → K+ π - π + ν search qq background - MC vs data above tau mass syst = 0.2%/ 2%/1%/3% KK π substructure 2% τ - → h-h+h- ν JED Tau04 9

  10. Final 3h Results B( τ - →̟ - ̟ + ̟ - ν τ ) = 9.13±0.05±0.46% B( τ - → K - ̟ + ̟ - ν τ ) = 0.384±0.014±0.038% B( τ - → K - K + ̟ - ν τ ) = 0.155±0.006±0.009% B( τ - → K - K + K - ν τ ) < 3.7x10 -5 @90% CL First direct 3 π result K ππ consistent w/OPAL (0.360±0.082±0.048%) & CLEO2 (0.346±0.023±0.056%) , higher than ALEPH (0.214±0.037±0.029%) Best precision on KK π Most stringent limit on KKK τ - → h-h+h- ν JED Tau04 10

  11. KK π Structure - Wess Zumino Anomaly Simplest τ decay picture: Vector (axial) current produces even (odd) numbers of pseudoscalars WZ Anomaly allows parity flip and allows a violation of this rule Golden mode τ→η̟̟ 0 ν previously observed by CLEO (no axial component) τ→ KK π ν has both axial and vector (WZ) contribution WZ effects rate and substructure of KK π KK π - WZ Anomaly JED Tau04 11

  12. Structure of tau to 3h ν Decays SM matrix element M ∝ L µ J µ τ ν Define: Q µ =(q 1 +q 2 +q 3 ) µ , s i =(q j +q k ) 3h J is a sum over 4 form factors: J= ∑ f i (q 1 ,q 2 ,q 3 ,Q)F i (s 1 ,s 2 ,Q) f i are kinematics - F i are Form Factors (physics) F 1 ,F 2 are axial terms F 3 is the WZ vector term f3=i ε α βγ q 1 α q 2 β q 3 γ F 4 is the scalar current (negligible) Kuhn, Mirkes, Z.PhysC56, 661(1992) KK π - WZ Anomaly JED Tau04 12

  13. Structure of tau to 3h ν Decays Integrate over ν direction Two remaining Euler angles are kinematically determined d Γ ( τ→ KK π )/dQ 2 ds 1 ds 2 ∝ W A (F 1 ,F 2 )+W B (F 3 ) No interference between Axial and WZ term Measurement possible entirely by using Dalitz plot and Q 2 KK π - WZ Anomaly JED Tau04 13

  14. Decker etal, ZPhysC.58,445(1993) The Physics We Fit Finkemeir & Mirkes, ZPhysC69, 243(1996) a 1 →ρ ( ’ ) π , ρ ( ’ ) → KK F 1 ∝ BW a1 (Q 2 ) x ( BW ρ (s 2 )+ β ρ BW ρ ’ (s 2 ) ) a 1 → K*K, K* → K π F 2 ∝ R F BW a1 (Q 2 ) x BW K* (s 1 ) Text ρ ( ’ , ’’ ) → K*K, K* → K ̟ ρ ( ’ , ’’ ) →ω̟ , ω → KK ½ ( BW ρ (Q 2 )+ λ BW ρ ’ (Q 2 )+ δ BW ρ ’’ (Q 2 ) ) x F 3 ∝ R B ( BW ω (s 2 )+ α BW K* (s 1 ) ) Five real fit parameters to KK π , K π , KK masses KK π - WZ Anomaly JED Tau04 14

  15. The Data and Fit Procedure Use 7 .09x10 6 τ pairs from CLEO3 Use same cuts as τ→ 3h ν analysis 2255 signal events, 256±16±46 background Obtain consistent overall Branching Fraction Use unbinned extended Maximum Likelihood fit including background term PDF = PDF(KK π ) x PDF(KK) x PDF(K π ) Use best known params for BW’ s KK π - WZ Anomaly JED Tau04 15

  16. Fit Results Shown is total fit and 3351203-007 240 600 (a) (b) contributions from Axial 160 400 and WZ components ≈1/2 is from WZ 80 200 Events/20 MeV 0 0 α=0.471±0.060±0.034 1.2 1.4 1.6 1.8 0.6 0.8 1.0 1.2 K+ mass (GeV/c 2 ) K K+ mass (GeV/c 2 ) λ =-0.314±0.073±0.080 I I I 200 (c) δ =0.101±0.020±0.156 Data RB=3.23±0.26±1.90 Fit Wess-Zumino RF=0.98±0.15±0.36 100 Axial Vector Backgrounds Γ WZ 0 0.9 1.1 1.3 1.5 =55.7±8.4±4.9% K K+ mass (GeV/c 2 ) I Γ Tot KK π - WZ Anomaly JED Tau04 16

  17. Substructure Result Relative rates in Kuhn & Mirkes model Axial current: τ→ a 1 (→ρ ( ’ ) ̟ , K*K) ν Vector current (WZ): τ→ ρ ( ’ , ’’ ) ( → K*K , ω̟ ) ν ω̟ ρ (’) ̟ R Axial =2.50.8±0.4% R WZ =3.4±0.9±1.0% K*K K*K R WZ =60.8±8.5±6.0% R Axial =46.8±8.4±5.2% Decay dominated by K*K, 50/50 WZ and Axial B(a1 to K*K)=2.2±0.5% consistent w/ previous CLEO ππ 0 π 0 result Axial component much smaller than ALEPH CVC estimate from DM1, +6 94 DM2 data -8 % CERN EP99-026 KK π - WZ Anomaly JED Tau04 17

  18. Angular Distributions 3351203-008 β : ∠ P(KKpi) in lab frame, 200 200 p K xp π 100 θ : ∠ P( τ ) in lab, P(KK π ) in τ 100 frame (a) (b) 0 0 ψ : ∠ P( τ ), P(lab) in KK π frame Events 1 0 1 1 0 1 I I cos cos 200 Data Angles are all expressible in Vector + Axial Vector terms of observables Axial Vector Only All Backgrounds 100 (c) Angles alone are not enough to 0 1 0 1 extract WZ/Axial contributions I cos KK π - WZ Anomaly JED Tau04 18

  19. Summary Using CLEO3, we have presented: 3 First direct B( τ→ 3 π ν ) result ✓ B( τ→ K ππ ν ) consistent w/OPAL and CLEO, higher than ALEPH ✓ Most stringent limit on τ→ KKK ν ✓ Best precision on B( τ→ KK π ν ) ✓ First Study of WZ and Axial parts of τ→ KK π ν ✓ Breakdown of KK π in Kuhn+Mirkes model JED Tau04 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend