precision measurement with ultracold atoms molecules
play

Precision measurement with ultracold atoms & molecules Jun Ye - PowerPoint PPT Presentation

Precision measurement with ultracold atoms & molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder http://jilawww.colorado.edu/YeLabs Advances in Precision tests


  1. Precision measurement with ultracold atoms & molecules Jun Ye JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado at Boulder http://jilawww.colorado.edu/YeLabs Advances in Precision tests and Experimental Gravitation in Space Firenze, September 28, 2006 $ Funding $ NIST, ONR, NSF, AFOSR, NASA, DOE

  2. First, let there be light Continuous wave laser: < 1 Hz stability and accuracy Ultrafast pulse: < 1 fs generation and control Figure of merit: 10 -15 Phase coherence after 10 15 optical cycles Precision spectroscopy and quantum control at highest resolution over widest optical bandwidth

  3. Frequency comb: state-of-the-art Freq. comb 10 6 :1 Reduction Gear • Optical Synthesizer Visible ν n = n f r – f o I ( ν ) f r 10 10 10 11 10 12 10 13 10 14 10 15 ν Frequency (Hz) f 0 XUV comb Molecular spectroscopy Quantum control Jones et al . Stowe et al ., Thorpe et al ., PRL 94 , 193201 (2005). PRL 96 , 153001(2006). Science 311 , 1595 (2006). C. Gohle et al ., Nature 436, 234 (2005).

  4. Optical coherence > 1 s, across entire visible 3 Linear Signal (a. u.) Optical Ludlow et al ., PRL 96, 033003(2006). linewidth: 2 250 mHz 4/11/ 2006 1 0 Laser 1 Laser 2 Cavity 1 1064 nm Cavity 2 Hz -6 -4 -2 0 2 4 6 8 10 700 nm Laser 2 Laser 1 ν noise-cancelled fiber noise-cancelled fiber Femto comb 30 m 35 m

  5. New era for optical atomic clocks Diddams et al ., Science 293, 825 (2001). Ye et al , Phys. Rev. Lett. 87, 270801 (2001). Oscillator ∆ν Feedback (accuracy) ν a Atoms Ultrastable laser Counter optical frequency synthesizer & counter RF or optical optical comb readout

  6. Cs fountain: SYRTE, NIST, PTB, … Yb + , Sr + , Al + … Single Hg + Sr Accurate atomic clocks optical

  7. All in one – Space Clock and Laser Ranging Time meets length Ye, Opt. Lett. 29, 1153 (2004). Space based interferometer Courtesy of P. Bender + Inertial Sensor Prof. G. Tino PRL 2006

  8. Control of matter - Learning from ion trappers Long - term quantum coherence: Clean separation between internal & external degrees of freedom Both in well defined quantum states

  9. Magic wavelength dipole trap Trapping of Single Atoms in Cavity QED Ye, Vernooy & Kimble, Phys. Rev. Lett. 83, 4987 (1999). For clocks: Katori et al ., Katori et al., J. Phys. Soc. Jpn 68, 2429 (1999) 6th Symp. Freq. Standards & Metrology (2002); Phys. Rev. Lett. 91, 173005 (2003).

  10. Cool Alkaline Earth – Strontium JILA work: Phys.Rev.Lett. 90, 193002 (2003); Phys.Rev.Lett. 93, 073003 (2004); Phys.Rev.Lett. 94, 153001 (2005); Phys.Rev.Lett. 94, 173002 (2005); Phys.Rev.Lett. 96, 033003 (2006); Phys.Rev.Lett. 96, 203201 (2006). T ~ 0.5 photon recoil ~ 220 nK δ ν / ν 0 at 1s ∆ν δν 1 1 1 ≈ ⋅ ⋅ noise 87 Sr 1 S 0 - 3 P 0 ~10 -18 ~ 1 mHz ν τ Q S N 0 ν 0 ≈ Q ∆ ν 1 P 1 3 P 1 689 nm 461nm (7.4 kHz) 3 P 0 (32 MHz) 698 nm ∆ν ∼ 1 mHz 1 S 0

  11. Spectroscopy at the magic wavelength 1-D Lamb-Dicke Regime 3 P 0 η = kx 0 = ( ω recoil / ω z ) 0.5 ~ 0.23 3500 1 S 0 3000 ω h Photon counts 2500 trap 2000 Red sideband 1500 ω trap Blue SB ω << ω 1000 recoil trap Carrier Γ << ω 500 clock trap -60 -40 -20 0 20 40 60 Optical frequency (Hz)

  12. Zoom into the carrier of 87 Sr 1 S 0 – 3 P 0 E Q ~ 1 x 10 14 Single trace without averaging 3200 3000 2800 Projected stability 2600 Photon Counts < 1 x 10 -15 at 1 s 2400 FWHM: 2200 4.6 Hz 2000 1800 1600 1400 April, 2006 Reproducibility 1200 -20 -10 0 10 20 30 ~ 6 x 10 -16 Clock Laser Detuning (Hz) (March – September, g 2006)

  13. Differential g-factor – Tensor polarizability Proposals based on Bosons: Santra et al ., PRL 94, 173002 (2005). Hong et al ., PRL 94, 050801 (2005). 1 P 1 Barber et al ., PRL 96, 083002 (2006). 3 P 1 3 P 0 3 P 0 HFI 3 P 0 1 S 0 1 S 0 1 S 0 -9/2 -9/2 I = 9/2 m f m f +9/2 +9/2 3 P 0 g-factor different than 1 S 0 due to HFI • • Shift of ~110 x m F Hz/Gauss for ∆ m F =0 • State preparation, field control • HF structure introduces slight lattice polarization sensitivity

  14. Optical Measurement of Nuclear g -factor No net electronic angular momentum (NMR-like experiment in the optical domain) 3 P 0 ∆ g = -108.5(4) Hz/(G m F ) 1 S 0 3 P 0 lifetime 140(40) s 3 P 0 Signal (Norm.) +9/2 +7/2 -9/2 0.10 3 P − 9 2 − 7 0 2 − -7/2 5 2 − 3 2 0.08 − 1 +5/2 2 + 1 -5/2 2 + 3 2 + 5 2 + 0.06 7 π 2 + 9 1 S 2 0 − 9 − 7 0.04 2 − 5 2 − -3/2 3 +3/2 2 − 1 2 + 1 2 + 3 2 + 5 2 + 7 2 + 9 2 0.02 2 +1/2 -1/2 0.00 -400 -200 0 200 400 L aser D etuning (H z)

  15. Coherent spectroscopy Q ~ 3 x 10 14 0.10 0.10 3 P 0 ( m F =5/2) Population 3 P 0 ( m F =5/2) Population 0.08 0.08 2.1 Hz 1.5 Hz 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 Laser Detuning (Hz) Laser Detuning (Hz) 0.20 3 P 0 ( m F =5/2) Population Ramsey 0.08 8 0.16 0.04 10 Hz Fourier Limit 0.12 6 Occurrences ~1.8 Hz 0.00 -10 -5 0 5 10 0.08 4 1.7 Hz 0.04 2 0.00 0 0 1 2 3 4 5 6 -60 -30 0 30 60 90 120 Transition Linewidth (Hz) Laser Detuning (Hz)

  16. Understanding systematics: Collision shift and Lattice AC Stark shift 120 Lattice Density shift 60 Stark shift 100 0 (0.14) Hz 50 -0.108(0.257) Hz 80 Occurances 40 Occurances 60 30 40 20 20 10 0 0 -20 -15 -10 -5 0 5 10 15 20 -40 -30 -20 -10 0 10 20 30 40 11 cm -3 )) Lattice Shift (Hz/I 0 ) Density Shift (Hz/(10 Total uncertainty 0.29 Hz � 6.7 x 10 -16

  17. Systematic uncertainty evaluations Zeeman shift, 0.10 Hz, 2.3 E-16 Lattice AC Stark, 0.26 Hz, 6.0 E-16 Atom density shift, 0.14 Hz, 3.3 E-16 Probe AC Stark, 0.05 Hz, 1.0 E-16 Blackbody 0.03 Hz 0.7 E-16 Systematic Total 0.39 Hz 7.3 E-16 For Absolute frequency measurement against Cs: Gravitational shift 3.0 E-16 Counting statistics 6.0 E-16 NIST Maser calibration 2.0 E-15 Measurement uncertainty Total 2.2 E-15

  18. Agreement among Boulder, Paris, and Tokyo Frequency- 429,228,004,229,000 Hz (A)Takamoto et al., Nature 435, 321 (2005). (B)Ludlow et al ., Phys. Rev. Lett. 96, 033003 (2006). 960 (C)Le Targat et al., arXiv:physics/0605200 Tokyo 2005 (A) (D) ICAP proceedings, Innsbruck, July 2006. (E)Takamoto et al., arXiv:physics/0608212 940 920 JILA 900 (D) May 2006 JILA 2005 (B) (preliminary) 880 Paris Tokyo 860 2006 (C) 2006 (D) (E) 840 Measurements

  19. Ultracold molecules: Test fundamental principles • Ultrahigh resolution spectroscopy One system, • Standards in wide spectral ranges Excited electronic state two different fundamental forces! • Molecular interferometry • Precision measurement QED Electronic e - e - ~ α Ground electronic state e - e - Vibration ~ m e /m p (mass on a spring) Strong interactions

  20. Ultracold Sr 2 Molecules in Lattice � Narrow lines Sr + Sr* – Favorable decay to electronic ground state � Structureless ground state Photo association – Small branching ratio losses Sr + Sr Raman transition for ground state production

  21. Molecular Clock – Sensitivity to Mass Ratio � Molecular potentials depend on electron mass, m e � Kinetic energy depends on proton mass, m p � Vibrational spacings depend on m p / m e � Precision tests of time variation of m p / m e ? m e m p m p m p ↑ D. DeMille, private communications (2005). Chin and Flambaum, PRL 96, 230801 (2006). S. Schiller, molecular ions

  22. Mass ratio tests � Homonuclear molecules are best � Relative Raman frequency measurement 0.3 Hz (fs comb), potential depth 3 x 10 13 Hz → 1 x 10 -14 0u � Atomic clocks: 6 x 10 -15 / year, but model-dependent, mainly QED effects ν probe ν pump Vg Sr 2 ν δ ( ν pump – ν probe ) < 0.5 Hz

  23. Test of fundamental constants α : fine structure constant •Modern epoch • Atomic clock measurements are consistent with zero ∆α/α < 10 -15 /yr ν • Early universe • Not so clear… Webb et al ., PRL 87, 091301 (2001). Astron. Astrophys. 415, L7 (2004). – Conflicting results

  24. Cold OH molecules to constrain α F’= 2 Hyperfine OH megamasers interactions ~ α 4 F’= 1 2 Π 3/2 Lambda doubling ~ α 0.4 High redshift z > 1 F= 2 Darling, Phys. Rev. Lett 91 , 011301 (2003). Chengalur et al ., Phys. Rev. Lett. 91, 241302 (2003). Kanekar et al ., Phys. Rev. Lett. 93 , 051302 (2004). F= 1 Multiple transitions from the same gas cloud (different dependences on α ) (Self check on systematics) Current uncertainly in laboratory based experiments is 100 Hz, leading to ∆α/α ~ 10 -5 ter Meulen & Dymanus, Astrophys. J. 172 , L21(1972).

  25. Stark deceleration Direct manipulation of ground state molecules Electrode + Initial cooling important (supersonic jets: single internal v v quantum state; external temp. ~ 1 K in a moving frame) + + F net p p Phase space selection (~ 10 mK) - - Applicable to a large variety of polar molecules Electrode - Energy Bethlem, Berden, Meijer, Phys. Rev. Lett. 83 1558 (1999). Position

  26. Stark Decelerator Slower electrodes Stark energy Position

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend