dimensional crossover in ultracold fermi gases
play

Dimensional crossover in ultracold Fermi gases from Functional - PowerPoint PPT Presentation

Dimensional crossover in ultracold Fermi gases from Functional Renormalisation Bruno Faigle-Cedzich Cold Quantum Coffee Heidelberg University 8 th May 2018 Table of contents 1. Physics of ultracold atoms 2. BCS-BEC physics from Functional


  1. Dimensional crossover in ultracold Fermi gases from Functional Renormalisation Bruno Faigle-Cedzich Cold Quantum Coffee Heidelberg University 8 th May 2018

  2. Table of contents 1. Physics of ultracold atoms 2. BCS-BEC physics from Functional Renormalisation 3. Dimensional crossover 4. Conclusion 1

  3. Physics of ultracold atoms

  4. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  5. Ultracold: β„“/πœ‡ th ≲ 1 Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  6. Ultracold: β„“/πœ‡ th ≲ 1 Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2

  7. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  8. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  9. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1 π‘Š ext = ℏ πœ• 2 (𝑠/β„“ osc ) 2

  10. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Ultracold: β„“/πœ‡ th ≲ 1

  11. Scales β€’ interparticle spacing π‘œ = β„“ βˆ’π‘’ β€’ thermal wavelength πœ‡ th β€’ van der Waals length πœ‡ vdW β€’ oscillator length β„“ osc β€’ scattering length 𝑏 2 Dilute: 𝑏 π‘œ 1/𝑒 β‰ͺ 1 Ultracold: β„“/πœ‡ th ≲ 1

  12. Scale hierarchy & Hamiltonian βƒ— 𝑏 𝑁 Μ‚ π‘œ = Μ‚ with 𝑦) 2 ] π‘œ( βƒ— 𝑏( βƒ— 𝑦 𝑏 † ( βƒ— 3 Effective Hamiltonian valid on scales ≫ β„“ vdW : Μ‚ adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals interparticle thermal wavelength oscillator length interaction scale length of trap spacing 𝐼 = ∫ [ Μ‚ 𝑦) (βˆ’β„ βˆ‡ 2 2 𝑁 + π‘Š ext ( βƒ— 𝑦)) Μ‚ 𝑦) + 𝑕 Ξ› Μ‚ 𝑏 and 𝑕 Ξ› = 4 𝜌 ℏ 2 𝑏 † Μ‚

  13. Feshbach resonances 4 2-atom scattering πœ‰(𝐢) = Ξ”πœˆ (𝐢 βˆ’ 𝐢 0 ) Δ𝐢 𝐢 βˆ’ 𝐢 0 ) with πœ‰ β†’ 0 @ resonance Regal et al. 2006 BEC 𝑏 = 𝑏 bg (1 βˆ’ BCS

  14. Feshbach resonances 4 ) 𝐢 βˆ’ 𝐢 0 Δ𝐢 πœ‰(𝐢) = Ξ”πœˆ (𝐢 βˆ’ 𝐢 0 ) with πœ‰ β†’ 0 @ resonance adapted from Boettcher et al. Nuclear Physics B (2012) van der Waals oscillator length interparticle thermal wavelength interaction scale length of trap spacing Feshbach resonance Regal et al. 2006 BEC 𝑏 = 𝑏 bg (1 βˆ’ BCS

  15. The BCS-BEC crossover in 3D 5 two-component fermionic atoms

  16. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions

  17. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms

  18. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs)

  19. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs) low π‘ˆ BEC (Bose-Einstein condensate)

  20. The BCS-BEC crossover in 3D 5 two-component fermionic atoms fermions with attractive interactions bound molecules of two atoms low π‘ˆ BCS-superfmuidity (condensation of Cooper pairs) low π‘ˆ BEC (Bose-Einstein condensate) Crossover (magnetic fjeld)

  21. The BCS-BEC crossover in 3D 5 Randeria Nature (2010) 𝑙 𝐺 = (3 𝜌 2 π‘œ) 1/3

  22. Features advantages β€’ couplings are tunable β€’ high precision experiments β€’ microphysics known challenges β€’ from microphysic laws to macroscopic observation including fmuctuations β€’ large couplings β€’ different effective degrees of freedom β€’ microphysics: single atoms & molecules β€’ macrophysics: bosonic collective degrees of freedom 6

  23. BCS-BEC physics from Functional Renormalisation

  24. The functional RG Flow equation (Wetterich 1993) Exact 1-loop equation 7 full quantum effective action bosons fermions IR UV πœ– 𝑙 Ξ“ 𝑙 = 1 2 STr [(Ξ“ (2) + 𝑆 𝑙 ) βˆ’1 πœ– 𝑙 𝑆 𝑙 ] βˆ‚ t Ξ“ k [ Ο†, ψ ] = 1 1 2

  25. Regulator and truncation dependence 8 dependent, yet Ξ“ is not β€’ during fmow all possible interactions may be produced β†’truncation needed adapted from Gies Springer (2012) β€’ fmow of Ξ“ 𝑙 regulator Theory space β€’ πœ– 𝑒 Ξ“ (π‘œ) depends on Ξ“ (π‘œ+1) and Ξ“ (π‘œ+2)

  26. Action and truncation Microscopic action 𝑇 = ∫ π‘Œ 2 ) ] with β€’ πœ” : Grassmann fjeld β€’ 𝜚 : bosonic fjeld consisting of two atoms β€’ πœ‰ : detuning β€’ 𝜐 : Euclidean time on torus with circumference 1/π‘ˆ β€’ 𝜈 : chemical potential 9 [πœ” βˆ— (πœ– 𝜐 βˆ’ βˆ‡ 2 βˆ’ 𝜈) πœ” + 𝜚 βˆ— (πœ– 𝜐 βˆ’ βˆ‡ 2 2 + πœ‰ βˆ’ 2𝜈) 𝜚 βˆ’ β„Ž (𝜚 βˆ— πœ” 1 πœ” 2 βˆ’ 𝜚 πœ” βˆ— 1 πœ” βˆ—

  27. Units Chosen such that: Consequences: unit 𝑙 𝐺 β€’ 2 𝑁 = 1 : [ momentum ] = [ energy ] (equiv. 𝑑 = 1 ) i.e. [𝑒] = π‘š 2 , [ βƒ— β†’ canonical dimensions differ from relativistic QFT! 10 ℏ = 𝑙 𝐢 = 2 𝑁 = 1 β€’ ℏ = 1 : [ momentum ] = [ length ] βˆ’1 with typical momentum β€’ 𝑙 𝐢 = 1 : [ temperature ] = [ energy ] π‘ž] = π‘š βˆ’1 , [π‘ˆ] = π‘š βˆ’2 , [𝜈] = π‘š βˆ’2 , [π‘œ] = π‘š βˆ’3 .

  28. Truncation : derivative expansion β€’ vertices are expanded in powers of the momenta 𝜍 = 𝜚 βˆ— 𝜚 (2nd order phase transition) 11 β€’ effective average potential 𝑉 𝑙 @ least to 2nd order in F B ) βˆ’ 1 = βˆ‚ t ( + M ) βˆ’ 1 = βˆ‚ t (

  29. 12 πœ” , 𝜚 = 𝐡 1/2 𝜚 𝛽 𝑛 𝑛=1 βˆ‘ 𝑁 𝑣 π‘œ π‘œ=1 βˆ‘ 𝑂 𝑉(𝜍) = and 𝜚 Ξ“ kin [πœ”, 𝜚] = ∫ 𝜚 Μ… Μ… π‘Œ π‘Œ [ βˆ‘ 𝜏={1,2} πœ” βˆ— 2βˆ‡ 2 ) 𝜚] πœ” Ξ“ int [πœ”, 𝜚] = ∫ 2 ) ] with β€’ renormalised fjelds: πœ” = 𝐡 1/2 Ansatz for effective action Ξ“ 𝑙 = Ξ“ kin + Ξ“ int 𝜏 (𝑇 πœ” πœ– 𝜐 βˆ’ βˆ‡ 2 βˆ’ 𝜈) πœ” 𝜏 + 𝜚 βˆ— (𝑇 𝜚 πœ– 𝜐 βˆ’ 1 [𝑉 (𝜚 βˆ— 𝜚) βˆ’ β„Ž (𝜚 βˆ— πœ” 1 πœ” 2 βˆ’ 𝜚 πœ” βˆ— 1 πœ” βˆ— β€’ 𝑇 πœ”,𝜚 = π‘Ž πœ”,𝜚 /𝐡 πœ”,𝜚 β€’ anomalous dimensions: πœƒ πœ”,𝜚 = βˆ’ πœ– 𝑒 log 𝐡 πœ”,𝜚 π‘œ! (𝜍 βˆ’ 𝜍 0 ) π‘œ βˆ’ π‘œ 𝑙 (𝜈 βˆ’ 𝜈 0 ) + 𝑛! (𝜈 βˆ’ 𝜈 0 ) (𝜍 βˆ’ 𝜍 0 ) 𝑛 , 𝑣 1 = 𝑛 2

  30. Regularisation scheme IR-regularisation: lim lim Litim-type regulator: β†’analytic evaluation of Matsubara sums 13 π‘ž 2 /𝑙 2 β†’0 𝑆 𝑙 (π‘ž 2 )/𝑙 2 > 0, 𝑙 2 /π‘ž 2 β†’0 𝑆 𝑙 (π‘ž 2 ) β†’ 0 𝑆 𝜚,𝑙 (𝑅) = 𝑆 𝜚,𝑙 (π‘Ÿ 2 ) = (𝑙 2 βˆ’ π‘Ÿ 2 2 ) πœ„ (𝑙 2 βˆ’ π‘Ÿ 2 2 ) 𝑆 πœ”,𝑙 (𝑅) = 𝑆 πœ”,𝑙 (π‘Ÿ 2 ) = [𝑙 2 sgn (π‘Ÿ 2 βˆ’ 𝜈) βˆ’ (π‘Ÿ 2 βˆ’ 𝜈)] πœ„ (𝑙 2 βˆ’ |π‘Ÿ 2 βˆ’ 𝜈|)

  31. UV renormalisation Connecting to experiment β€’ @ π‘ˆ = 0 : connect to correct vacuum physics at unitarity Thus: 𝑏 = 𝑏(𝐢) = β„Ž 2 Ξ› 14 β€’ initial condition for 𝑉 𝑙 : 𝑉 Ξ› (𝜍) = (πœ‰ Ξ› βˆ’ 2 𝜈) 𝜍 ( 𝑏 βˆ’1 = 0 ), i.e. 𝑛 2 𝜚,𝑙=0 = 0 = 𝜈 8 𝜌 πœ‰(𝐢) , πœ‰(𝐢) = πœ‰ Ξ› βˆ’ πœ€πœ‰(Ξ›)

  32. Universality Μƒ 𝑛 2 β€’ existence of FPs in RG fmow: macrophysics independent of πœ‡ 𝜚,βˆ— β„Ž 2 initial values β€’ loss of memory of microphysics: start at the FP values the microphysics 15 Ξ› = 6 𝜌 2 Ξ›, πœ‡ 𝜚,Ξ› = Ξ› , 𝜚,Ξ› = πœ‰ Ξ› βˆ’ 2 𝜈, π‘œ Ξ› = 𝜈 3/2 𝑇 𝜚,Ξ› = 1, 𝛽 Ξ› = βˆ’2, 3 𝜌 2 Θ(𝜈).

  33. 3D BCS-BEC crossover π‘ˆ > 0 : 16 π‘ˆ = 0 : (with 𝑑 = 𝑙 𝐺 𝑏 ) 1.0 2.5 0.8 2.0 0.6 1.5 0.4 1.0 0.2 0.5 0.0 0.0 - 4 - 2 0 2 4 - 4 - 2 0 2 4 0.35 2.0 0.30 0.25 1.5 0.20 1.0 0.15 0.10 0.5 0.05 0.0 0.00 - 4 - 2 0 2 4 - 4 - 2 0 2 4

  34. Dimensional crossover

  35. Why are quasi-2D systems interesting? β€’ promising materials: graphene, high π‘ˆ 𝑑 -superconductors, layered semiconductors β€’ pronounced infmuence of quantum fmuctuations β€’ experimental accessibility via highly anisotropic trapping potentials β€’ for insuffjcient anisotropy β†’dimensional crossover 17 β†’disentangle dimensionality from many-body physics ZΓΌrn et al. PRL (2015)

  36. Boundary conditions Ξ¨(𝜐, 𝑦, 𝑧, 𝑨 = 0) = Ξ¨(𝜐, 𝑦, 𝑧, 𝑨 = 𝑀) (2 𝜌) π‘’βˆ’1 𝑒 π‘’βˆ’1 π‘Ÿ ∫ 𝑙 π‘œ 𝑒 𝑒 π‘Ÿ ∫ β€’ spatial Matsubara sum π‘œ ∈ β„• β€’ delimit 𝑨 -direction by potential well of length 𝑀 β†’quantisation of momentum in 𝑨 -direction: β€’ impose periodic boundary conditions: Ξ¨ = {πœ”, 𝜚} else ∞ 0 ≀ 𝑨 ≀ 𝑀 0 ⎩ { ⎨ { ⎧ π‘Š box (𝑨) = 18 π‘Ÿ 𝑨 β†’ 𝑙 π‘œ = 2 𝜌 π‘œ 𝑀 , (2 𝜌) 𝑒 = 1 𝑀 βˆ‘

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend