1 n expansion for pion gas
play

1 / N expansion for pion gas Fermi systems NR Fermi gas and - PowerPoint PPT Presentation

1 / N expansion T. Brauner O ( N ) sigma model Auxiliary field technique Next-to-leading order Summary part I 1 / N expansion for pion gas Fermi systems NR Fermi gas and strongly interacting Fermi systems Dense quark matter Summary


  1. 1 / N expansion T. Brauner O ( N ) sigma model Auxiliary field technique Next-to-leading order Summary – part I 1 / N expansion for pion gas Fermi systems NR Fermi gas and strongly interacting Fermi systems Dense quark matter Summary – part II Tom´ aˇ s Brauner Institut f¨ ur Theoretische Physik Goethe Universit¨ at Frankfurt am Main R + R Budapest, 3 April 2009

  2. Outline 1 / N expansion T. Brauner O ( N ) sigma model Auxiliary field technique Next-to-leading order O ( N ) sigma model and 1PI-1 / N expansion 1 Summary – part I Auxiliary field technique Fermi systems NR Fermi gas Next-to-leading order Dense quark matter Summary – part II Summary – part I Strongly interacting Fermi systems 2 Nonrelativistic Fermi gas Dense quark matter Summary – part II

  3. Outline 1 / N expansion T. Brauner O ( N ) sigma model Auxiliary field technique Next-to-leading order O ( N ) sigma model and 1PI-1 / N expansion 1 Summary – part I Auxiliary field technique Fermi systems NR Fermi gas Next-to-leading order Dense quark matter Summary – part II Summary – part I Strongly interacting Fermi systems 2 Nonrelativistic Fermi gas Dense quark matter Summary – part II

  4. Introduction 1 / N expansion QCD at low temperatures: include only the lightest DOFs, T. Brauner i.e., the Goldstone bosons of the spontaneously broken O ( N ) sigma model SU L ( N f ) × SU R ( N f ) chiral symmetry. Auxiliary field technique For N f = 2 make use of the isomorphism Next-to-leading order Summary – part I SU ( 2 ) × SU ( 2 ) ≃ SO ( 4 ) and study the O ( 4 ) model. Fermi systems NR Fermi gas O ( N ) model studied in the 1PI-1 / N expansion since long Dense quark matter Summary – part II time ago. Coleman, Jackiw, and Politzer (1974) : LO at T = 0; Root (1974) : NLO at T = 0 Meyers-Ortmanns, Pirner, and Schaefer (1993) : LO at T � = 0 Andersen, Boer, and Warringa (2004) : NLO pressure at T � = 0 O ( N ) model also studied extensively in the 2PI-1 / N formalism. Baym and Grinstein (1977); Amelino-Camelia and Pi (1993) Petropoulos (1999); Lenaghan and Rischke (2000) Here: renormalized 1PI-1 / N expansion to NLO including solution of gap equation at nonzero temperature. Related work: Jakov´ ac (2008); Fej˝ os, Patk´ os, and Sz´ ep (2009)

  5. Introduction 1 / N expansion QCD at low temperatures: include only the lightest DOFs, T. Brauner i.e., the Goldstone bosons of the spontaneously broken O ( N ) sigma model SU L ( N f ) × SU R ( N f ) chiral symmetry. Auxiliary field technique For N f = 2 make use of the isomorphism Next-to-leading order Summary – part I SU ( 2 ) × SU ( 2 ) ≃ SO ( 4 ) and study the O ( 4 ) model. Fermi systems NR Fermi gas O ( N ) model studied in the 1PI-1 / N expansion since long Dense quark matter Summary – part II time ago. Coleman, Jackiw, and Politzer (1974) : LO at T = 0; Root (1974) : NLO at T = 0 Meyers-Ortmanns, Pirner, and Schaefer (1993) : LO at T � = 0 Andersen, Boer, and Warringa (2004) : NLO pressure at T � = 0 O ( N ) model also studied extensively in the 2PI-1 / N formalism. Baym and Grinstein (1977); Amelino-Camelia and Pi (1993) Petropoulos (1999); Lenaghan and Rischke (2000) Here: renormalized 1PI-1 / N expansion to NLO including solution of gap equation at nonzero temperature. Related work: Jakov´ ac (2008); Fej˝ os, Patk´ os, and Sz´ ep (2009)

  6. O ( N ) model 1 / N expansion Generalize the O ( 4 ) model to arbitrary N by a suitable T. Brauner redefinition of the couplings. O ( N ) sigma model Auxiliary field technique L = 1 2 ( ∂ µ φ i ) 2 + λ b 8 N ( φ i φ i − Nf 2 π , b ) 2 Next-to-leading order Summary – part I Fermi systems Some leading-order, O ( N ) , contributions to the pressure: NR Fermi gas Dense quark matter Summary – part II Some next-to-leading-order, O ( 1 ) , contributions to the pressure:

  7. Auxiliary field technique 1 / N expansion T. Brauner Introduce a new auxiliary field α and add pure Gaussian O ( N ) sigma model integral over α . Auxiliary field technique Next-to-leading order Summary – part I � 2 ∆ L = N � α − i λ b 2 N ( φ i φ i − Nf 2 Fermi systems π , b ) 2 λ b NR Fermi gas Dense quark matter Summary – part II L = 1 2 ( ∂ µ φ i ) 2 − i π , b )+ N 2 α ( φ i φ i − Nf 2 α 2 2 λ b Systematic renormalization of divergences possible order by order in 1 / N by redefinition of the parameters. π + a 0 + 1 1 = 1 λ + b 0 + 1 f 2 π , b = f 2 Na 1 + ··· , Nb 1 + ··· λ b Introduce explicit chiral-symmetry breaking term. √ L → L − NH σ

  8. 1 / N expansion Andersen and TB (2008) 1 / N expansion T. Brauner Introduce the chiral condensate φ 0 and auxiliary field O ( N ) sigma model condensate M , and shift the fields. Auxiliary field technique Next-to-leading order √ α → iM 2 + α Summary – part I σ → N φ 0 + σ , √ N Fermi systems NR Fermi gas Dense quark matter The auxiliary field trick reduces resummation of all NLO Summary – part II graphs to a single Gaussian integral. S NLO P log ( P 2 + M 2 ) − NH φ 0 − NM 4 = 1 + 1 Z eff 2 NM 2 ( φ 2 0 − f 2 2 ( N − 3 ) ∑ π ) β V 2 λ − 1 2 NM 2 a 0 − 1 2 NM 4 b 0 + 1 P χ T D − 1 χ ∗ − 1 2 M 2 a 1 − 1 Z 2 M 4 b 1 2 ∑ � 1 2 Π ( P , M )+ 1 − i φ 0 � � α � λ + b 0 D − 1 = , χ = P 2 + M 2 − i φ 0 σ 1 1 Z Π ( P , M ) = ∑ Q 2 + M 2 ( P + Q ) 2 + M 2 Q

  9. LO effective potential 1 / N expansion T. Brauner LO thermodynamic potential includes the condensate O ( N ) sigma model contributions and thermal fluctuations of massless pions. Auxiliary field technique Next-to-leading order Summary – part I V LO = M 2 0 )+ T 4 64 π 2 J 0 ( β M )+ M 4 � 32 π 2 + log µ 2 m 2 + 1 � Fermi systems 2 ( f 2 π − φ 2 + H φ 0 64 π 2 NR Fermi gas λ 2 Dense quark matter Z ∞ 0 dp p 4 J 0 ( β M ) = 32 Summary – part II � p 2 + M 2 where and n ( ω p ) ω p = 3 T 4 ω p LO spectrum at N = 4: 4 massless pions governing the low- T pressure. The correction to 3 at NLO. LO renormalization by the LO counterterms. a 0 = Λ 2 32 π 2 log Λ 2 1 16 π 2 , b 0 = − µ 2 λ 2 LO β -function: β ( λ ) = 16 π 2 .

  10. NLO effective potential 1 / N expansion T. Brauner NLO expression for the effective potential (pressure): O ( N ) sigma model Auxiliary field technique Next-to-leading order Summary – part I V NLO = − 1 P log J ( P , M )+ 1 2 M 2 a 1 + 1 Z 2 M 4 b 1 Fermi systems 2 ∑ NR Fermi gas Dense quark matter φ 2 J ( P , M ) = 1 2 Π ( P , M )+ 1 Summary – part II 0 λ + b 0 + P 2 + M 2 Contribution from the dynamics of σ and α ; must be evaluated numerically. NLO effective action ⇒ 1 / N correction to the pion mass. In chiral limit, pion exactly massless at each order of 1 / N . NLO effective action ⇒ LO sigma propagator.

  11. Extraction of divergences 1 / N expansion Expand the log in V NLO in inverse powers of momentum. T. Brauner O ( N ) sigma model   � �  2 M 4 + 3 M 2 ( G − 3 2 M 2 ) κ + log Λ 2 M 2 + G − 2 M 2 + ( G − 2 M 2 ) 2 � � + 2 − 2 Auxiliary field technique log J = log  + ···   P 2 P 2 κ + log Λ 2 P 4 κ + log Λ 2 � 2 Next-to-leading order � α + log Λ 2 P 2 P 2 P 2 Summary – part I Fermi systems 0 + T 2 J 1 ( β M ) − M 2 log µ 2 M 2 − 32 π 2 M 2 � 1 � NR Fermi gas G = 16 π 2 φ 2 κ = 1 + 32 π 2 , λ + b 0 Dense quark matter λ Summary – part II

  12. Extraction of divergences 1 / N expansion Expand the log in V NLO in inverse powers of momentum. T. Brauner O ( N ) sigma model   � �  2 M 4 + 3 M 2 ( G − 3 2 M 2 ) κ + log Λ 2 M 2 + G − 2 M 2 + ( G − 2 M 2 ) 2 � � + 2 − 2 Auxiliary field technique log J = log  + ···   P 2 P 2 κ + log Λ 2 P 4 κ + log Λ 2 � 2 Next-to-leading order � α + log Λ 2 P 2 P 2 P 2 Summary – part I Fermi systems 0 + T 2 J 1 ( β M ) − M 2 log µ 2 M 2 − 32 π 2 M 2 � 1 � NR Fermi gas G = 16 π 2 φ 2 κ = 1 + 32 π 2 , λ + b 0 Dense quark matter λ Summary – part II Quartic UV-divergence, independent of M , φ 0 , ρ 0 . Subtracted within the vacuum pressure. Quadratic UV-divergence. Absorbed in the f 2 π counterterm a 1 . Logarithmic UV-divergence. Absorbed in the 1 λ counterterm b 1 . NLO β -function: λ 2 � 1 + 8 � β ( λ ) = 16 π 2 N

  13. NLO renormalization procedure 1 / N expansion T. Brauner The quadratic divergence contains temperature-dependent O ( N ) sigma model Auxiliary field technique terms in G ! Next-to-leading order Summary – part I T -dependence only disappears upon using LO gap equation Fermi systems for M : G = 16 π 2 f 2 π . NR Fermi gas Dense quark matter To obtain divergence-free gap equations, one should be able Summary – part II to renormalize the effective potential off the LO minimum! Way out: We only need to use the EOM for M , not for the physical condensate φ 0 . When this is treated as merely a constraint to eliminate M in favor of φ 0 , we get an effective potential of φ 0 solely, which is renormalizable for any value of the classical field φ 0 . Coleman, Jackiw, and Politzer (1974)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend