crs stacking a simplified explanation
play

CRS stacking: a simplified explanation Motivation CRS stack Jrgen - PowerPoint PPT Presentation

CRS stacking: a simplified explanation Mann et al. CRS stacking: a simplified explanation Motivation CRS stack Jrgen Mann 1 , Jrg Schleicher 2 , Stacking parameters and Thomas Hertweck 3 What about 3D? Practical aspects Conclusion


  1. CRS stacking: a Basic idea simplified explanation Mann et al. Observations: Motivation ◮ conventional stack implicitly relies on reflector CRS stack continuity Stacking parameters (this also applies to NMO + DMO correction) What about 3D? ◮ based on normal rays for offset zero Practical aspects Conclusion ◮ we have band-limited data Acknowledgments ➥ Fresnel zone concept Consequences: If conventional stack works ◮ there are neighboring reflection points W I T

  2. CRS stacking: a Basic idea simplified explanation Mann et al. Observations: Motivation ◮ conventional stack implicitly relies on reflector CRS stack continuity Stacking parameters (this also applies to NMO + DMO correction) What about 3D? ◮ based on normal rays for offset zero Practical aspects Conclusion ◮ we have band-limited data Acknowledgments ➥ Fresnel zone concept Consequences: If conventional stack works ◮ there are neighboring reflection points ◮ they physically contribute to the wavefield at a considered CMP W I T

  3. CRS stacking: a Basic idea simplified explanation Mann et al. Observations: Motivation ◮ conventional stack implicitly relies on reflector CRS stack continuity Stacking parameters (this also applies to NMO + DMO correction) What about 3D? ◮ based on normal rays for offset zero Practical aspects Conclusion ◮ we have band-limited data Acknowledgments ➥ Fresnel zone concept Consequences: If conventional stack works ◮ there are neighboring reflection points ◮ they physically contribute to the wavefield at a considered CMP Why shouldn’t we incorporate these W I T neighboring reflection points?

  4. CRS stacking: a Coverage of one CMP ray family simplified explanation Mann et al. 3000 Motivation CRS stack 2500 Stacking parameters What about 3D? 2000 Practical aspects Offset [m] Conclusion 1500 Acknowledgments 1000 500 0 400 600 800 1000 1200 1400 1600 1800 Midpoint [m] W I T Traces with reflection points on reflector area illuminated by one CMP ray family

  5. CRS stacking: a Projected Fresnel zone simplified explanation Mann et al. 3000 Motivation CRS stack 2500 Stacking parameters What about 3D? 2000 Practical aspects Offset [m] Conclusion 1500 Acknowledgments 1000 500 0 400 600 800 1000 1200 1400 1600 1800 Midpoint [m] W I T Projected Fresnel zone of the reflector area illuminated by one CMP ray family

  6. CRS stacking: a CRS stack simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  7. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  8. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  9. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects Conclusion Acknowledgments W I T

  10. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion Acknowledgments W I T

  11. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments W I T

  12. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section W I T

  13. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section Additional features: W I T

  14. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section Additional features: ◮ incorporates neighboring CMP gathers W I T

  15. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section Additional features: ◮ incorporates neighboring CMP gathers ◮ yields additional stacking parameters W I T

  16. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section Additional features: ◮ incorporates neighboring CMP gathers ◮ yields additional stacking parameters ◮ increases the coverage W I T

  17. CRS stacking: a CRS stack simplified explanation Mann et al. Features inherited from conventional stack: Motivation CRS stack ◮ normal ray concept Stacking parameters ◮ assumption of reflector continuity What about 3D? Practical aspects ◮ analytical traveltime approximation (2nd order) Conclusion ◮ coherence analysis yields stacking parameters Acknowledgments ◮ stack yields simulated zero-offset section Additional features: ◮ incorporates neighboring CMP gathers ◮ yields additional stacking parameters ◮ increases the coverage ◮ improves reflector continuity and S/N ratio W I T

  18. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  19. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? Practical aspects Conclusion Acknowledgments W I T

  20. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion Acknowledgments W I T

  21. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments W I T

  22. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments – unfamiliar parameters W I T

  23. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments – unfamiliar parameters Aims in the following: W I T

  24. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments – unfamiliar parameters Aims in the following: ◮ operator expressed in more familiar terms W I T

  25. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments – unfamiliar parameters Aims in the following: ◮ operator expressed in more familiar terms ◮ demonstrate relation between these parameters W I T

  26. CRS stacking: a CRS stacking parameters simplified explanation Mann et al. Motivation CRS stack CRS stacking operator usually parameterized Stacking parameters in terms of wavefield attributes What about 3D? + vivid geometrical interpretation Practical aspects Conclusion + useful for inversion, smoothing, . . . Acknowledgments – unfamiliar parameters Aims in the following: ◮ operator expressed in more familiar terms ◮ demonstrate relation between these parameters ◮ clear distinction between model and data space W I T

  27. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  28. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Hyperbolic representation: Motivation CRS stack x 2 + ∆ m 2 t 2 ( ∆ m , x ) = [ t 0 + 2 p ∆ m ] 2 + Stacking parameters v 2 v 2 What about 3D? NMO CMO Practical aspects Conclusion Acknowledgments W I T

  29. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Hyperbolic representation: Motivation CRS stack x 2 + ∆ m 2 t 2 ( ∆ m , x ) = [ t 0 + 2 p ∆ m ] 2 + Stacking parameters v 2 v 2 What about 3D? NMO CMO Practical aspects Conclusion Acknowledgments midpoint displacement m − m 0 ∆ m W I T

  30. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Hyperbolic representation: Motivation CRS stack x 2 + ∆ m 2 t 2 ( ∆ m , x ) = [ t 0 + 2 p ∆ m ] 2 + Stacking parameters v 2 v 2 What about 3D? NMO CMO Practical aspects Conclusion Acknowledgments midpoint displacement m − m 0 ∆ m p horizontal slowness W I T

  31. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Hyperbolic representation: Motivation CRS stack x 2 + ∆ m 2 t 2 ( ∆ m , x ) = [ t 0 + 2 p ∆ m ] 2 + Stacking parameters v 2 v 2 What about 3D? NMO CMO Practical aspects Conclusion Acknowledgments midpoint displacement m − m 0 ∆ m p horizontal slowness v CMO curvature-moveout velocity W I T

  32. CRS stacking: a CRS stacking operator simplified explanation Mann et al. Hyperbolic representation: Motivation CRS stack x 2 + ∆ m 2 t 2 ( ∆ m , x ) = [ t 0 + 2 p ∆ m ] 2 + Stacking parameters v 2 v 2 What about 3D? NMO CMO Practical aspects x 2 t 2 4 t 0 p ∆ m + 4 ∆ m 2 p 2 Conclusion = 0 + + v 2 Acknowledgments NMO � �� � � �� � conventional stack dip dependent ∆ m 2 + v CMO � �� � curvature dependent midpoint displacement m − m 0 ∆ m p horizontal slowness v CMO curvature-moveout velocity W I T

  33. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments Time W I T Distance

  34. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments Time W I T Distance

  35. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments Time Time W I T Distance Offset

  36. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 Time Time W I T Distance Offset

  37. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 Time Time W I T Distance Offset

  38. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO W I T Distance Offset

  39. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO W I T Distance Offset

  40. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO W I T Distance Offset

  41. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO P 0 W I T Distance Offset

  42. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO P 0 W I T Distance Offset

  43. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 W I T Distance Offset

  44. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 W I T Distance Offset

  45. CRS stacking: a simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  46. CRS stacking: a simplified explanation Mann et al. Depth Motivation CRS stack Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  47. CRS stacking: a m 0 simplified explanation Mann et al. Depth Motivation CRS stack Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  48. CRS stacking: a m 0 simplified explanation Mann et al. Depth Motivation CRS stack Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  49. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  50. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  51. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  52. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  53. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  54. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  55. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  56. CRS stacking: a m 0 simplified explanation Mann et al. α Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  57. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  58. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  59. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  60. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  61. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  62. m 0 CRS stacking: a simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  63. m 0 CRS stacking: a R NIP simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Time Time NMO 2p P 0 v CMO W I T Distance Offset

  64. m 0 CRS stacking: a R NIP simplified explanation Mann et al. α R N Depth Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Data space Time Time NMO 2p P 0 v CMO W I T Distance Offset

  65. m 0 CRS stacking: a R NIP simplified explanation Mann et al. α R N Depth Model space Motivation CRS stack NIP Stacking parameters What about 3D? Practical aspects Distance Conclusion m 0 Acknowledgments P P 0 t 0 0 v Data space Time Time NMO 2p P 0 v CMO W I T Distance Offset

  66. CRS stacking: a Relations between parameters simplified explanation Mann et al. Motivation CRS stack Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments W I T

  67. CRS stacking: a Relations between parameters simplified explanation Mann et al. Motivation CRS stack Parameterization in terms of. . . Stacking parameters What about 3D? traveltime wavefront slowness and Practical aspects derivatives properties velocities Conclusion � Acknowledgments ∂ t � sin α p � ∂ m v 0 m = m 0 , x = 0 � cos 2 α ∂ 2 t ∂ t � v CMO � ∂ m , ∂ m 2 v 0 R N m = m 0 , x = 0 � cos 2 α ∂ m , ∂ 2 t ∂ t � v NMO � ∂ x 2 v 0 R NIP m = m 0 , x = 0 W I T

  68. CRS stacking: a Relations between parameters simplified explanation Mann et al. Motivation CRS stack Parameterization in terms of. . . Stacking parameters What about 3D? traveltime wavefront slowness and Practical aspects derivatives properties velocities Conclusion � Acknowledgments ∂ t � sin α p � ∂ m v 0 m = m 0 , x = 0 � cos 2 α ∂ 2 t ∂ t � v CMO � ∂ m , ∂ m 2 v 0 R N m = m 0 , x = 0 � cos 2 α ∂ m , ∂ 2 t ∂ t � v NMO � ∂ x 2 v 0 R NIP m = m 0 , x = 0 v 0 : near surface velocity W I T

  69. CRS stacking: a Relations between parameters simplified explanation Mann et al. Motivation CRS stack Parameterization in terms of. . . Stacking parameters What about 3D? traveltime wavefront slowness and Practical aspects derivatives properties velocities Conclusion � Acknowledgments ∂ t � sin α p � ∂ m v 0 m = m 0 , x = 0 � cos 2 α ∂ 2 t ∂ t � v CMO � ∂ m , ∂ m 2 v 0 R N m = m 0 , x = 0 � cos 2 α ∂ 2 t � v NMO � ∂ h 2 v 0 R NIP x = x m , h = 0 v 0 : near surface velocity W I T

  70. CRS stacking: a Relations between parameters simplified explanation Mann et al. Motivation CRS stack Parameterization in terms of. . . Stacking parameters What about 3D? traveltime wavefront slowness and Practical aspects derivatives properties velocities Conclusion � Acknowledgments ∂ t � sin α p � ∂ m v 0 m = m 0 , x = 0 � cos 2 α ∂ 2 t ∂ t � v CMO � ∂ m , ∂ m 2 v 0 R N m = m 0 , x = 0 � cos 2 α ∂ m , ∂ 2 t ∂ t � v NMO � ∂ x 2 v 0 R NIP m = m 0 , x = 0 v 0 : near surface velocity W I T

  71. CRS stacking: a CRS operator simplified explanation Mann et al. Offset Midpoint Midpoint e m i M T O Offset Motivation f f s i d Time e t p o i n t CRS stack Time Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments CMP gather and section at offset 500 m W I T

  72. CRS stacking: a CRS operator simplified explanation Mann et al. Offset Midpoint Midpoint e m i M T O Offset Motivation f f s i d Time e t p o i n t CRS stack Time Stacking parameters What about 3D? Practical aspects Conclusion Acknowledgments CMP gather and section at offset 500 m Displayed ranges: offset up to 3.5 km, midpoint ± 5 km W I T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend