quantum fluctuations of polaronic cloud in a bec of
play

Quantum Fluctuations of Polaronic Cloud in a BEC of ultracold atoms - PowerPoint PPT Presentation

Quantum Fluctuations of Polaronic Cloud in a BEC of ultracold atoms Yulia Shchadilova Russian Quantum Center In collaboration with: Fabian Grusdt (University of Kaiserslautern), Eugene Demler (Harvard University), Alexey Rubtsov (RQC, Moscow


  1. Quantum Fluctuations of Polaronic Cloud in a BEC of ultracold atoms Yulia Shchadilova Russian Quantum Center In collaboration with: Fabian Grusdt (University of Kaiserslautern), Eugene Demler (Harvard University), Alexey Rubtsov (RQC, Moscow State University) ~ q mail to: yes@rqc.ru Tuesday, September 16, 14

  2. Plan of the talk I. Introduction II. Model and observables III. Mean field approach IV. Gaussian approach V. Results VI. Summary and Outlook ~ q Tuesday, September 16, 14

  3. a fermion interacting Polaron with a scalar boson field impurity + Lev Landau self-induced polarization 1933 polar semiconductors ionic crystal doped quantum magnets e − QFT high-Tc superconductors ultra-cold atoms Tuesday, September 16, 14

  4. Ultracold atoms Two-component mixtures α = a 2 IB - Adjustable interaction parameter a BB ξ - High mobility P RF Tuesday, September 16, 14

  5. Ultracold atoms. Observables RF spectroscopy: Oscillations in a trap: I ( ω ) Z ω 0 E 0 - polaron mass - polaron binding energy Tuesday, September 16, 14

  6. Frölich Model H = P 2 ⇣ ⌘ e i k · R + X X a † a † ˆ V k a k + ˆ a k 2 M + ˆ ω k ˆ k ˆ − k k k Polaronic frame Impurity problem strongly interacting bosons fermion in effective media P Tuesday, September 16, 14

  7. Polaron frame T. D. Lee, F. E. Low, and D. Pines, P Review 90, 297 (1953). U − 1 H → ˆ ˆ LLP H ˆ U LLP U LLP = e i ~ k ~ a † R P ˆ k ˆ k ˆ a k ! 2 1 ⇣ ⌘ X ~ b † X b † X b † ~ ˆ k ˆ k ˆ ˆ k + ˆ ! k ˆ k ˆ H = P − b k V k b − k b k + + 2 M k k k 12 10 0.8 8 0.6 V k ê V • 6 Ω k 0.4 4 0.2 2 0.0 0 0 1 2 3 4 0 1 2 3 4 k k Tuesday, September 16, 14

  8. Limits ! 2 1 ⇣ ⌘ X ~ b † X b † X b † ~ ˆ k ˆ k ˆ ˆ k + ˆ ! k ˆ k ˆ H = P − b k V k b − k b k + + 2 M k k k nonlinearity polarization 1) Heavy impurity, M → ∞ 2) Weak interactions, V k → 0 ˆ b k → ˆ b k − V k / ω k n k = 0 ˆ Tuesday, September 16, 14

  9. Polarization of phonon modes i (ˆ b † − ˆ Basis of coherent states: b ) | MF i = ˆ D ( β ) | 0 i e β k ( ˆ b † k ) b k − ˆ ˆ Y D ( β ) = α k b † + ˆ b † � β ) | 0 i D E ˆ H (ˆ b, ˆ MF = h 0 | H (ˆ b � β , ˆ b b † ) A. Shashi, et al. PRA 89, 053617 (2014) Tuesday, September 16, 14

  10. Polarization of phonon modes i (ˆ b † − ˆ Basis of coherent states: b ) | MF i = ˆ D ( β ) | 0 i e β k ( ˆ b † k ) b k − ˆ ˆ Y D ( β ) = α k b † + ˆ b † � β ) | 0 i D E ˆ H (ˆ b, ˆ MF = h 0 | H (ˆ b � β , ˆ b b † ) Minimization gives the mean field self-consistent condition: Ω k V k � k = − ⇣ ⌘ ~ P − ~ ~ ! k + k 2 k P ph 2 M − M ~ k | � k | 2 ~ X P ph = k k A. Shashi, et al. PRA 89, 053617 (2014) Tuesday, September 16, 14

  11. Phonon Zero-Point Fluctuations i (ˆ b † − ˆ b ) Basis of squeezed coherent states: Q | GSC i = ˆ D ( β ) ˆ S ( Q ) | 0 i α b † b † kk 0 Q kk 0 ˆ k ˆ 1 ˆ P k 0 − H.c. S ( Q ) = e 2 b † + ˆ ˆ b Tuesday, September 16, 14

  12. Phonon Zero-Point Fluctuations i (ˆ b † − ˆ b ) Basis of squeezed coherent states: Q | GSC i = ˆ D ( β ) ˆ S ( Q ) | 0 i α b † b † kk 0 Q kk 0 ˆ k ˆ 1 ˆ P k 0 − H.c. S ( Q ) = e 2 b † + ˆ ˆ b Polarization + Bogoliubov transformation S † ( Q ) ˆ ˆ D † ( β )ˆ b k ˆ D ( β ) ˆ [cosh Q ] kk 0 ˆ [sinh Q ] kk 0 ˆ b † X X b k 0 + S ( Q ) = β k + k 0 k 0 k 0 Tuesday, September 16, 14

  13. Phonon Zero-Point Fluctuations i (ˆ b † − ˆ b ) Basis of squeezed coherent states: Q | GSC i = ˆ D ( β ) ˆ S ( Q ) | 0 i α b † b † kk 0 Q kk 0 ˆ k ˆ 1 ˆ P k 0 − H.c. S ( Q ) = e 2 b † + ˆ ˆ b Polarization + Bogoliubov transformation S † ( Q ) ˆ ˆ D † ( β )ˆ b k ˆ D ( β ) ˆ [cosh Q ] kk 0 ˆ [sinh Q ] kk 0 ˆ b † X X b k 0 + S ( Q ) = β k + k 0 k 0 k 0 Gaussian statistics: D E ˆ b · ˆ b = β · β + cosh Q sinh Q D E D E = β · β + sinh 2 Q ˆ b † · ˆ ˆ b = β b Tuesday, September 16, 14

  14. Phonon Zero-Point Fluctuations ∂ h H i ∂ h H i ∂ Q kk 0 = 0 = 0 ∂α k An approximate ground state solution: - use Taylor series for averages Q 2 - considering only the terms up to in this average Tuesday, September 16, 14

  15. Phonon Zero-Point Fluctuations ∂ h H i ∂ h H i ∂ Q kk 0 = 0 = 0 ∂α k An approximate ground state solution: - use Taylor series for averages Q 2 - considering only the terms up to in this average ✓ ◆ ✓ k 0 q ◆ Ω k + kk 0 Q kk 0 + kk 0 M β q β k 0 Q kq + kq X M β k β k 0 + M + Ω k 0 M β q β k Q qk 0 = 0 q V k � k = − ! k + k ν M − 1 ⇣ ⌘ ~ νλ k λ P − ~ ~ k P ph − 2 M Numerical solution is without further approximations | � k | 2 � kk 0 + Q 2 ⇣ ⌘ X ~ ~ P ph = k kk 0 kk 0 Tuesday, September 16, 14

  16. Phonon Zero-Point Fluctuations Solution without approximations: ✓ ◆ ✓ k 0 q ◆ Ω k + kk 0 Q kk 0 + kk 0 M β q β k 0 Q kq + kq X M β k β k 0 + M + Ω k 0 M β q β k Q qk 0 = 0 q Denote: Q kk 0 = − 1 α k α k 0 η k,k 0 ~ k ~ M k 0 Ω k + 2 M + Ω k 0 Rewrite: ↵ 2 ↵ 2 Z Z ⇣ ⌘ ⇣ ⌘ ⇣ ⌘ q q ~ k · ~ q · ~ ~ d 3 q d 3 q ⌘ ( k, k 0 ) = ⌘ ( q, k 0 ) ⌘ ( k, q ) ~ k · ~ k 0 k 0 q − − M Ω k,q M Ω q,k 0 Introduce: ↵ 2 Z q ~ d 3 q F ( k ) = ⌘ k,q ~ q M Ω k,q An equation for F to be solved iteratively: α 2 α 2 Z Z X X d 3 k 0 k 0 d 3 k 0 k 0 M Ω k,k 0 k 0 µ k 0 M Ω k,k 0 F µ ( k 0 ) k 0 F λ ( k ) = ( k µ − F µ ( k )) k µ λ − λ µ µ Tuesday, September 16, 14

  17. Polaron ground state energy 23 Na 6 Li M/m B ≈ 0 . 26 0.6 diagMC  MF Gaussian 0.4 RG     E p  0.2     0.0  0.0 0.2 0.4 0.6 0.8 1.0 Α diagMC: Vlietinck et. al, arXiv:1406.6506 (2014) Gaussian (this work): Y.E.S., Grusdt, Demler, Rubtsov, in preparation (2014) RG: Grusdt, Y.E.S., Rubtsov, Abanin, Demler., in preparation (2014) Tuesday, September 16, 14

  18. Total energy I ( ω ) Z E = g IB n 0 + h H i ω M/m B =0.26316, q=0, � 0 =2000/ � , n 0 = � − 3 0 E 0 10 8 E 0 [c/ � ] 6 diagMC, Vlietinck et al. 4 RG 23 Na 6 Li variational MF 2 Feynman, Vlietinck et al. M/m B ≈ 0 . 26 0 0 0.2 0.4 0.6 0.8 1 � Tuesday, September 16, 14

  19. Polaron mass 23 Na 6 Li ≡ M δ v p M δ P = 1 − P ph M/m B ≈ 0 . 26 P . M p 4.0 MF 3.5 Gaussian RG 3.0 2d order PT M p ê M 2.5 2.0 1.5 1.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Α Tuesday, September 16, 14

  20. Coherence factor 23 Na 6 Li D E ˆ k ˆ k 0 ˆ b k ˆ b † b † b k 0 M/m B ≈ 0 . 26 g (2) ( k, k 0 ) = n k n k 0 α = 1 Bunching: 20 q=p g (2) > 1 q= 0 15 MF g 2 H k,kcos q L Coherent: 10 g (2) = 1 Antibunching 5 (squeezing): 0 g (2) < 1 0 2 4 6 8 10 k ê x Tuesday, September 16, 14

  21. Light/heavy impurities ~ q M/m B 23 Na 6 Li 0 . 26 50 87 Rb 40 K 0 . 46 0 6 Li 2 6 Li 0 . 5 − 50 7 Li 6 Li 0 . 86 − 100 0 10 20 30 40 87 Rb 133 Cs 1 . 53 23 Na 40 K 1 . 74 87 Rb 40 K 2 . 12 Tuesday, September 16, 14

  22. Summary and outlook Quantum fluctuations are significant in case of light or/and strongly interacting impurities. Signatures of entanglement can be captured experimentally. - Subsonic -- supersonic transition - Non-homogeneous BEC ~ - Anisotropic interactions of dipolar gases q - Real-time dynamics Tuesday, September 16, 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend