laboratoire kastler brossel coll ge de france ens upmc
play

Laboratoire Kastler Brossel Collge de France, ENS, UPMC, CNRS - PowerPoint PPT Presentation

Laboratoire Kastler Brossel Collge de France, ENS, UPMC, CNRS Introduction to Ultracold Atoms Superfluid Mott insulator transition Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr ) Advanced School on Quantum Science and Quantum Technologies,


  1. Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS Introduction to Ultracold Atoms Superfluid – Mott insulator transition Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr ) Advanced School on Quantum Science and Quantum Technologies, ICTP Trieste September 4, 2017

  2. 1 Wannier functions and tight-binding limit 2 Bose-Hubbard model 3 Ground state : Superfluid -Mott insulator transition Phase coherence Dynamics and transport Shell structure 4 A glance at fermions Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  3. Very deep lattices In a deep lattice potential, atoms are tightly trapped around the potential minima. Harmonic approximation for each well : V lat ( x ≈ x i ) ≈ 1 2 m a ω 2 lat ( x − x i ) 2 , � � ω lat = 2 V 0 E R . The bands are centered around the energy E n ≈ ( n + 1 / 2) � ω lat . First correction : quantum tunneling across the potential barriers, as in tight-binding methods used in solid-state physics (Linear Combination of Atomic Orbitals) This is best handled using a new basis, formed by so-called Wannier functions . Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  4. Wannier functions Wannier functions : discrete Fourier transforms with respect to the site locations of the Bloch wave functions, 1 � e − iqx i φ n,q ( x ) . w n ( x − x i ) = √ N s q ∈ BZ 1 • All Wannier functions can be deduced from w n ( x ) by translation of x i = id . • There are exactly N s such functions per band (as many as Bloch functions). • Wannier functions form a basis of Hilbert space ( not an eigenbasis of ˆ H ). V 0 = 4 E R V 0 = 10 E R V 0 = 20 E R Cautionary note: Bloch functions are defined up to a q − dependent phase which needs to be fixed to obtain localized Wannier functions [W. Kohn, Phys. Rev. (1959)] . Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  5. Hamiltonian in the Wannier basis Second quantized formalism (useful for the interacting case). Bloch basis : � ε n ( k )ˆ b † n,k ˆ H = b n,k . n,k ∈ BZ 1 ˆ b n,k : annihilation operator for Bloch state ( n, k ) . Wannier basis : � a † H = − J n ( i − j )ˆ n,i ˆ a n,j , n,i,j ˆ a n,i : annihilation operator for Wannier state w n ( x − x i ) . Tunneling energies : � � 2 � � dx w ∗ J n ( i − j ) = n ( x − x j ) 2 M ∆ − V lat ( x ) w n ( x − x i ) . (also called hopping parameters) Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  6. Hamiltonian in the Wannier basis � a † H = − J n ( i − j )ˆ n,i ˆ a n,j , n,i,j Tunneling energies : � � 2 � � 1 � e − i ( qx i − q ′ x j ) dx u ∗ J n ( i − j ) = 2 M ∆ − V lat ( x ) n,q ( x ) u n,q ′ ( x ) , N s q,q ′ ∈ BZ 1 � �� � = − ε n ( q ) δ n,n ′ δ q,q ′ = − 1 � ε n ( q ) e − iq · ( x i − x j ) . N s q ∈ BZ 1 J n ( i − j ) depend only on the relative distance x i − x j between the two sites. • On-site energy ( i = j ): Mean energy of band n J n (0) = − 1 � ε n ( q ) = − E n N s q ∈ BZ 1 • Nearest-neighbor tunneling ( j = i ± 1 ): J n (1) = − 1 � ε n ( q ) e iqx = − J n N s q ∈ BZ 1 Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  7. Tight-binding limit For deep lattices (roughly V 0 ≫ 5 E R ), the tunneling energies fall off very quickly with distance: 0 10 J 0 (1) � Wannier function for V 0 = 10 E R : J 0 (2) J 0 (3) − 2 10 R ] Tunnel Energies [E ] − Tunnel Energies [E − 4 10 − − 6 10 − 0 5 10 15 20 V 0 [E R ] Two useful approximations : • Tight-binding approximation : keep only the lowest terms • Single-band approximation : keep only the lowest band–drop band index and let J 0 (1) ≡ J � � a † a † ˆ H T B = E 0 ˆ i ˆ a i − J ˆ i ˆ a j , i � i,j � Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  8. Three-dimensional lattices Cubic lattice potential : � sin( k α x α ) 2 V lat = V 0 α Dispersion relation : � ǫ n ( q ) = ǫ n α ( q α ) , α = x,y,z • ǫ n ( q ) : 1d dispersion relation, • n : a triplet of integers indexing the various bands • q : quasi momentum ∈ BZ1 : ] − π/d, π/d ] 3 . Bloch functions : φ n , q ( r ) = e i q · r u n x ,q x ( x ) u n y ,q y ( y ) u n z ,q z ( z ) . Wannier functions : W n ( r − r n ) = w n x ( x − n x d x ) w n y ( y − n y d y ) w n z ( z − n z d z ) . Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  9. 1 Wannier functions and tight-binding limit 2 Bose-Hubbard model 3 Ground state : Superfluid -Mott insulator transition Phase coherence Dynamics and transport Shell structure 4 A glance at fermions Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  10. Interacting atoms in a deep optical lattice Basic Hamiltonian for bosons interacting via short-range forces : H = ˆ ˆ H 0 + ˆ H int , � − � 2 � � ˆ Ψ † ( r ) ˆ ˆ H 0 = d r 2 M ∆ + V lat ( r ) Ψ( r ) , � H int = g ˆ d (3) r ˆ Ψ † ( r )ˆ Ψ † ( r )ˆ Ψ( r )ˆ Ψ( r ) . 2 • ˆ Ψ( r ) : field operator annihilating a boson a position r , • V lat ( r ) : lattice potential, • g = 4 π � 2 a : coupling constant, M • scattering length a >0 : repulsive interactions. • Not simpler in the Bloch basis. • Can be drastically simplified in the Wannier basis Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  11. Interacting bosons in the Wannier basis Basis of Wannier functions W ν ( r − r i ) : • r i : position of site i , � ˆ W ν ( r − r i )ˆ Ψ( r ) = a ν,i . • ν : band index ν,i • ˆ a ν,i : annihilation operator Single-particle Hamiltonian : • Tight-binding approximation : keep only the lowest terms • Single-band approximation : keep only the lowest band–drop band index, J 0 (1) ≡ J � a † ˆ → ˆ H 0 − H T B = − J ˆ i ˆ a j � i,j � Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  12. Interacting bosons in the Wannier basis Basis of Wannier functions W ν ( r − r i ) : • r i : position of site i , � ˆ Ψ( r ) = W ν ( r − r i )ˆ a ν,i . • ν : band index ν,i • ˆ a ν,i : annihilation operator Interaction Hamiltonian : H int = 1 � ˆ → ˆ a † a † H int − U ijkl ˆ i ˆ j ˆ a k ˆ a l 2 ijkl � d r W ∗ ( r − r i ) W ∗ ( r − r j ) W ( r − r k ) W ( r − r l ) U ijkl = g log( | W ( x, y, 0) | 2 ) for V 0 = 5 E R : In the tight binding regime, strong localization of Wannier function W ( r − r i ) around r i . On-site interactions ( i = j = k = l ) are strongly dominant: H int ≈ 1 � a † a † ˆ a i + · · · U iiii ˆ i ˆ i ˆ a i ˆ 2 i Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  13. Bose Hubbard model 1 Single band approximation 2 Tight-binding approximation 3 On-site interactions Bose-Hubbard model : a j + U � � a † H BH = − J ˆ i ˆ n i (ˆ ˆ n i − 1) . 2 � i,j � i a † n i = ˆ ˆ i ˆ a i : operator counting the number of particles at site i . y • Tunneling energy : √ 2 J J = max ε ( q ) − min ε ( q ) 2 z J z = 6 : number of nearest neighbors U • On-site interaction energy : � d r w ( r ) 4 . U = g 3 U x Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  14. Parameters of the Bose Hubbard model Calculation for 87 Rb atoms [a=5.5 nm] in a lattice at λ L = 820 nm: U/E r 10 0 J/E R U nn /E R Energy [ E R ] 10 − 1 J nnn /E R 10 − 2 10 − 3 10 − 4 5 10 15 20 25 30 35 40 V 0 [ E R ] Harmonic oscillator approximation : � � V 0 � � 3 / 4 ∆ band ≈ � ω lat 2 V 0 U 8 = , ≈ π k L a . E R E R E R E R E R 1 Single band approximation : • V 0 ≫ E R � ER � 1 / 4 • U ≪ ∆ band : k L a ≪ V 0 2 Tight-binding approximation : V 0 ≫ 5 E R 3 On-site interactions : V 0 ≫ E R Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  15. 1 Wannier functions and tight-binding limit 2 Bose-Hubbard model 3 Ground state : Superfluid -Mott insulator transition Phase coherence Dynamics and transport Shell structure 4 A glance at fermions Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  16. Non-interacting limit U = 0 BEC in the lowest energy Bloch state q = 0 : � � N 1 � � N 1 1 � b † a † ˆ | Ψ � N = √ | ∅ � = √ √ N s ˆ | ∅ � q =0 i N ! N ! i • Fixed number of particles N : canonical ensemble Probability to find n i atoms at one given site i : � 1 � p ( n i ) ≈ e − n n n i N , 1 n i ! + O N s √ Poisson statistics, mean n , standard deviation ∼ n In the thermodynamic limit N → ∞ , N s → ∞ , one finds the same result as for a coherent state with the same average number of particles N : √ √ � � N ˆ b † � a † n ˆ i | ∅ � | Ψ � coh = N e q =0 | ∅ � = N i e i • Fluctuating number of particles N : grand canonical ensemble H BH → G = H BH − µN Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

  17. Weakly-interacting limit U ≪ J Coherent state wavefunction in the grand canonical ensemble : ∞ α n i � � i | Ψ � coh = | α i � , | α i � = N i √ n i ! | n i � i , ˆ a i | α i � = α i | α i � i n i =0 with { α i } i =1 , ··· ,N s the variational parameters. One can relate the presence of the condensate to a non-zero expectation value of the matter wave field α i = � ˆ a i � , playing the role of an order parameter : � N N s e iφ • Condensate wavefunction : α i = � ˆ a i � = • Mean density : n = | α i | 2 = condensate density Spontaneous symmetry breaking point of view. Starting point to formulate a Gross-Pitaevskii (weakly interacting) theory : variational ansatz with self-consistent α i determined by the total (single-particle + interaction)Hamiltonian. “Adiabatic continuation” from the ideal Bose gas. Fabrice Gerbier ( fabrice.gerbier@lkb.ens.fr )

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend