spin orbit coupling in an ultracold gas of dysprosium
play

Spin-orbit coupling in an ultracold gas of Dysprosium: prospects - PowerPoint PPT Presentation

Spin-orbit coupling in an ultracold gas of Dysprosium: prospects towards topological superfluidity Sylvain Nascimb` ene Laboratoire Kastler Brossel, UPMC, ENS, Coll` ege de France, CNRS October 30 th 2014 Ultracold Dy experiment C. Bouazza,


  1. Spin-orbit coupling in an ultracold gas of Dysprosium: prospects towards topological superfluidity Sylvain Nascimb` ene Laboratoire Kastler Brossel, UPMC, ENS, Coll` ege de France, CNRS October 30 th 2014 Ultracold Dy experiment C. Bouazza, D. Dreon, W. Maineult, L. Sidorenkov, T. Tian, S. N., J. Dalibard October 30th 2014 S. Nascimb` ene S. Nascimb` ene 1 / 26

  2. Outline Artificial spin-orbit coupling with ultracold atoms 1 Ultracold Dysprosium gases 2 Creating and studying a topological superfluid 3 October 30th 2014 S. Nascimb` ene S. Nascimb` ene 2 / 26

  3. Outline Artificial spin-orbit coupling with ultracold atoms 1 Ultracold Dysprosium gases 2 Creating and studying a topological superfluid 3 October 30th 2014 S. Nascimb` ene S. Nascimb` ene 3 / 26

  4. Artificial spin-orbit coupling with ultracold atoms Definition of a spin-orbit coupling An effective spin 1/2 F = 2 example of 87 Rb F = 1 A momentum-dependent spin coupling E � 2 q 2 2 m 1 + � 2 k h ˆ � H = m ˆ q x ˆ σ z + h ˆ σ x q q x 0 2 k October 30th 2014 S. Nascimb` ene S. Nascimb` ene 4 / 26

  5. Spin-orbit coupling from laser coupling Raman transition spin spin E spin spin - k L k L , q + k L q , q - k L -k L 0 k L Coupling between |↓ , q − k L e x � and |↑ , q + k L e x � , with a Rabi frequency h . October 30th 2014 S. Nascimb` ene S. Nascimb` ene 5 / 26

  6. Spin-orbit coupling from laser coupling Raman transition spin spin E spin spin - k L k L , q + k L q , q - k L -k L 0 k L Coupling between |↓ , q − k L e x � and |↑ , q + k L e x � , with a Rabi frequency h . Can be rewritten as � 2 q 2 2 m 1 + � 2 k L ˆ � H = m ˆ q x ˆ σ z + h ˆ σ x q October 30th 2014 S. Nascimb` ene S. Nascimb` ene 5 / 26

  7. Spin-orbit coupled Bose-Einstein condensates 2 degenerate single-particle ground states for strong spin-orbit coupling. weak spin-orbit coupling strong spin-orbit coupling E E q x q x 0 0 October 30th 2014 S. Nascimb` ene S. Nascimb` ene 6 / 26

  8. Spin-orbit coupled Bose-Einstein condensates 2 degenerate single-particle ground states for strong spin-orbit coupling. weak spin-orbit coupling strong spin-orbit coupling E E q x q x 0 0 First realization in the group of I. Spielman (JQI) Y.-J. Lin, K. Jim´ enez-Garc´ ıa, I. B. Spielman, Nature 471 , 83 (2011) Further studies from the groups of S. Chen (UST Shanghai), C. Zhang (Univ. Texas), T. Busch (OIST), Y. Chen (Purdue Univ.) October 30th 2014 S. Nascimb` ene S. Nascimb` ene 6 / 26

  9. Spin-orbit coupling in fermionic alkali atoms Potassium 40 K: Spin-orbit coupled Fermi gas at thermal equilibrium P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109 , 095301 (2012) Lithium 6 Li: spin-injection spectroscopy L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109 , 095302 (2012) October 30th 2014 S. Nascimb` ene S. Nascimb` ene 7 / 26

  10. The issue of spontaneous emission for alkali atoms The electric dipole operator is inefficient for flipping the electron/nuclear spin. Residual coupling coming from the P state L · S coupling. Scalar dipole potentials: Γ scattering / Ω dipole ≃ Γ / ∆. Raman coupling: the P 1 / 2 and P 3 / 2 lines tend to cancel each other � 1 1 � Γ scattering / Ω Raman ≃ Γ − . ∆ 1 / 2 ∆ 3 / 2 P 3/2 10 6 D FS W Raman / G sc scalar dipole trap P 1/2 10 5 10 4 Raman coupling 1000 770 nm 767 nm 100 750 760 770 780 790 l (nm) S 1/2 For an optimized detuning: Ω Raman = 1 E r ↔ Heating rate of 700 nK/s. October 30th 2014 S. Nascimb` ene S. Nascimb` ene 8 / 26

  11. Outline Artificial spin-orbit coupling with ultracold atoms 1 Ultracold Dysprosium gases 2 Creating and studying a topological superfluid 3 October 30th 2014 S. Nascimb` ene S. Nascimb` ene 9 / 26

  12. The Dysprosium atom 2 fermions, 3 bosons J = 8 ground state, electronic config. 4 f 10 ( 5 I 8 ) 6 s 2 ( 1 S 0 ) Quantum degeneracy for bosons and fermions in the group of B. Lev M. Lu, N. Q. Burdick, S. H. Youn, B. L. Lev, Phys. Rev. Lett. 107 , 190401 (2011) M. Lu, N. Q. Burdick, B. L. Lev, Phys. Rev. Lett. 108 , 215301 (2012) October 30th 2014 S. Nascimb` ene S. Nascimb` ene 10 / 26

  13. Optical transitions 333 G /2 p = 32 MHz 421 nm (slowing and imaging transition) 6s 6p ( 1 P 1 ) 400 Wavelength (nm) 500 6s 6p ( 3 P 1 ) 667 1000 626 nm (MOT transition) G /2 p = 135 kHz 2000 6s 2 ( 1 S 0 ) 8 11 7 9 10 12 J value The 4 f 10 core electrons play no role in these optical transitions. October 30th 2014 S. Nascimb` ene S. Nascimb` ene 11 / 26

  14. Atomic beam and Zeeman slower ZS laser transverse cooling of the atomic beam Zeeman slower in-vacuum atomic beam mirror effusion cell oven shutter @ 1350 °C 1250 °C 1350 °C 10 g of Dy October 30th 2014 S. Nascimb` ene S. Nascimb` ene 12 / 26

  15. Magneto-optical trap MOT beams @ 626 nm 10 8 atoms at 50 µ K, still under characterization T. Maier, H. Kadau, M. Schmitt, A. Griesmaier, T. Pfau , Opt. Lett. 39 , 3138 (2014) October 30th 2014 S. Nascimb` ene S. Nascimb` ene 13 / 26

  16. Optical trapping and transport dipole trap @ 1070 nm for transport dipole trap for evaporation In the science cell: forced evaporation to reach quantum degeneracy October 30th 2014 S. Nascimb` ene S. Nascimb` ene 14 / 26

  17. Raman coupling close to a narrow optical transition The 6 s 2 → 6 s 6 p ( 1 P 1 ) transition at λ b ∼ 400 nm is spin-independent. Narrow J → J ′ transitions efficiently couple Zeeman levels. Spin-independent light shift V scalar ∼ α (Γ b / ∆ b + Γ / ∆) I Spin-dependent light shift V vector ∼ � Ω Raman ∼ α (Γ / ∆) I Γ 2 b / ∆ 2 b + Γ 2 / ∆ 2 � � Spontaneous emission Γ scattering ∼ α I / � l b = 420 nm G b = 2 p 30 MHz 4 10 6 W Raman / G sc 3 10 6 D b J ‘= 9 l = 626 nm 2 10 6 G = 2 p 135 kHz D 1 10 6 0 622 624 626 628 630 l (nm) J = 8 For the detuning ∆ = (Γ / Γ b )∆ b ∼ 1 nm one gets Ω Raman / Γ scattering ∼ ∆ b / Γ b ∼ 10 7 : negligible heating October 30th 2014 S. Nascimb` ene S. Nascimb` ene 15 / 26

  18. Outline Artificial spin-orbit coupling with ultracold atoms 1 Ultracold Dysprosium gases 2 Creating and studying a topological superfluid 3 October 30th 2014 S. Nascimb` ene S. Nascimb` ene 16 / 26

  19. s -wave superfluidity in ultracold Fermi gases Without spin-orbit coupling: s -wave superfluidity in spin-1/2 Fermi systems E 2-fold degeneracy m q x 0 4 Fermi points October 30th 2014 S. Nascimb` ene S. Nascimb` ene 17 / 26

  20. s -wave superfluidity in ultracold Fermi gases Without spin-orbit coupling: s -wave superfluidity in spin-1/2 Fermi systems E 2-fold degeneracy m q x 0 � c † c † s -wave interactions g ˆ k + q , ↑ ˆ k ′ − q , ↓ ˆ c k ′ , ↓ ˆ c k , ↑ . k , k ′ , q � c † c † ⇒ s -wave gap ∆ ˆ k , ↑ ˆ − k , ↓ + h . c . k October 30th 2014 S. Nascimb` ene S. Nascimb` ene 17 / 26

  21. Spin-orbit coupled Fermi gases E E m m q x q x 0 0 4 Fermi points 2 Fermi points 4 Fermi points: looks like a spin-1/2 Fermi gas 2 Fermi points: looks like a spinless Fermi gas October 30th 2014 S. Nascimb` ene S. Nascimb` ene 18 / 26

  22. Spin-orbit coupled Fermi gases E E m m q x q x 0 0 4 Fermi points 2 Fermi points In the ‘spinless’ situation, let us project interactions on the single occupied branch. � g ( k , k ′ , q )ˆ c † c † k + q ˆ k ′ − q ˆ c k ′ ˆ c k k , k ′ , q Dressed s -wave interactions have an odd symmetry g ( k , k ′ , − q ) = − g ( k , k ′ , q ). � c † c † ⇒ p -wave gap ∆( k )ˆ k ˆ − k + h . c ., with ∆( − k ) = − ∆( k ) . k C. Zhang, S. Tewari, R. M. Lutchyn, S. Das Sarma, Phys. Rev. Lett. 101 , 160401 (2008) R. A. Williams et al, Science 335 , 314 (2012) October 30th 2014 S. Nascimb` ene S. Nascimb` ene 18 / 26

  23. Phase diagram Topological superfluidity when the Fermi surface is effectively ‘spinless’: − h < µ < h In local density approximation: µ ( x ) = µ 0 − 1 2 m ω 2 x x 2 . trivial trivial topological superfluid superfluid superfluid density position October 30th 2014 S. Nascimb` ene S. Nascimb` ene 19 / 26

  24. Phase diagram Topological superfluidity when the Fermi surface is effectively ‘spinless’: − h < µ < h In local density approximation: µ ( x ) = µ 0 − 1 2 m ω 2 x x 2 . Majorana fermions trivial trivial topological superfluid superfluid superfluid density position 2 Majorana fermions are located at the phase separation points. October 30th 2014 S. Nascimb` ene S. Nascimb` ene 19 / 26

  25. Properties of Majorana fermions Their energy is locked at the Fermi level 1 � e − L /ξ , e − ∆ / k B T , e − ∆ / V perturbation � δ E / ∆ < max E D /2 particles d E Majoranas g i 0 -D /2 holes → Topologically protected qubits Non-abelian quantum statistics 2 topological superconductor Majorana quasi-particle braiding Braiding operations do not commute. October 30th 2014 S. Nascimb` ene S. Nascimb` ene 20 / 26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend