quantum droplets of a dysprosium bec
play

Quantum droplets of a dysprosium BEC Igor Ferrier-Barbut Holger - PowerPoint PPT Presentation

Quantum droplets of a dysprosium BEC Igor Ferrier-Barbut Holger Kadau, Matthias Schmitt, Matthias Wenzel, Tilman Pfau 5. Physikalisches Institut,Stuttgart University SFB/TRR 21 1 Bad Honnef 05/2016 Can one form a liquid of dilute ultracold


  1. Quantum droplets of a dysprosium BEC Igor Ferrier-Barbut Holger Kadau, Matthias Schmitt, Matthias Wenzel, Tilman Pfau 5. Physikalisches Institut,Stuttgart University SFB/TRR 21 1 Bad Honnef 05/2016

  2. Can one form a liquid of dilute ultracold bosons? 2 Bad Honnef 05/2016

  3. Can one form a liquid of dilute ultracold bosons? Beyond mean-field energy of the weakly-interacting Bose gas V = g n 2 128 E n a 3 + · · · ) √ 2 (1 + 15 √ π mean-field LHY, quantum fluctuations Phys. Rev 106 , 1135 (1957) 2 Bad Honnef 05/2016

  4. Can one form a liquid of dilute ultracold bosons? Beyond mean-field energy of the weakly-interacting Bose gas V = g n 2 128 E n a 3 + · · · ) √ 2 (1 + 15 √ π mean-field LHY, quantum fluctuations Phys. Rev 106 , 1135 (1957) What if these two contributions could be tuned to have opposite signs? G. E. Volovik, The Universe in a Helium Droplet , (Oxford University Press, 2009) D. S. Petrov , Phys. Rev. Lett . 115 , 155302 (2015). 2 Bad Honnef 05/2016

  5. Can one form a liquid of dilute ultracold bosons? Beyond mean-field energy of the weakly-interacting Bose gas V = g n 2 128 E n a 3 + · · · ) √ 2 (1 + 15 √ π mean-field LHY, quantum fluctuations Phys. Rev 106 , 1135 (1957) What if these two contributions could be tuned to have opposite signs? G. E. Volovik, The Universe in a Helium Droplet , (Oxford University Press, 2009) D. S. Petrov , Phys. Rev. Lett . 115 , 155302 (2015). Toy model: E V = e = α n 2 + β n 5 / 2 2 Bad Honnef 05/2016

  6. Can one form a liquid of dilute ultracold bosons? Beyond mean-field energy of the weakly-interacting Bose gas V = g n 2 128 E n a 3 + · · · ) √ 2 (1 + 15 √ π mean-field LHY, quantum fluctuations Phys. Rev 106 , 1135 (1957) What if these two contributions could be tuned to have opposite signs? G. E. Volovik, The Universe in a Helium Droplet , (Oxford University Press, 2009) D. S. Petrov , Phys. Rev. Lett . 115 , 155302 (2015). Gas - liquid transition! Toy model: 100 1 ∂ n κ T = 10 E V = e = α n 2 + β n 5 / 2 n 2 ∂μ 1 liquid κ T ( a.u ) 0.100 0.010 gas 0.001 10 - 4 - 10 - 5 0 5 10 α / β 2 Bad Honnef 05/2016

  7. Can one form a liquid of dilute ultracold bosons? Beyond mean-field energy of the weakly-interacting Bose gas V = g n 2 128 E n a 3 + · · · ) √ 2 (1 + 15 √ π mean-field LHY, quantum fluctuations Phys. Rev 106 , 1135 (1957) What if these two contributions could be tuned to have opposite signs? G. E. Volovik, The Universe in a Helium Droplet , (Oxford University Press, 2009) D. S. Petrov , Phys. Rev. Lett . 115 , 155302 (2015). Gas - liquid transition! Toy model: 100 1 ∂ n κ T = 10 E V = e = α n 2 + β n 5 / 2 n 2 ∂μ 1 liquid κ T ( a.u ) 0.100 0.010 ◆ 2 ✓ α gas 0.001 n 0 ∝ β 10 - 4 - 10 - 5 0 5 10 α / β 2 Bad Honnef 05/2016

  8. Dipolar Bose-Einstein condensates 3 Bad Honnef 05/2016

  9. Dipolar Bose-Einstein condensates V c ( r ) = 4 π ~ 2 a Contact interaction δ ( r ) m 3 Bad Honnef 05/2016

  10. Dipolar Bose-Einstein condensates V c ( r ) = 4 π ~ 2 a Contact interaction δ ( r ) m V dd ( r ) = µ 0 µ 2 1 − 3 cos 2 θ Dipole-dipole interaction 4 π r 3 θ ~ µ ~ r µ 3 Bad Honnef 05/2016

  11. Dipolar Bose-Einstein condensates V c ( r ) = 4 π ~ 2 a Contact interaction δ ( r ) m V dd ( r ) = µ 0 µ 2 1 − 3 cos 2 θ Dipole-dipole interaction 4 π r 3 θ ~ µ ~ r Characteristic length scales: µ Scattering length a a dd = m µ 0 µ 2 Dipolar length 12 π ~ 2 3 Bad Honnef 05/2016

  12. Dipolar Bose-Einstein condensates V c ( r ) = 4 π ~ 2 a Contact interaction δ ( r ) m V dd ( r ) = µ 0 µ 2 1 − 3 cos 2 θ Dipole-dipole interaction 4 π r 3 θ ~ µ ~ r Characteristic length scales: µ Scattering length a a dd = m µ 0 µ 2 Dipolar length 12 π ~ 2 Relative dipolar strength: ε dd = a dd a 3 Bad Honnef 05/2016

  13. Dipolar Bose-Einstein condensates r ) 2 r ) = g n ( ~ + n ( ~ r ) Z Mean-field e ( ~ r 0 − ~ r 0 ) r V dd ( ~ r ) n ( ~ d ~ 2 2 ~ B 2 R z 2 R r κ = R r R z 4 Bad Honnef 05/2016

  14. Dipolar Bose-Einstein condensates r ) 2 r ) = g n ( ~ + n ( ~ r ) Z Mean-field r 0 − ~ r 0 ) e ( ~ r V dd ( ~ r ) n ( ~ d ~ 2 2 e mf (0) = g n 2 0 2 (1 − ε dd f ( κ )) ~ B 2 R z 2 R r κ = R r R z 4 Bad Honnef 05/2016

  15. Dipolar Bose-Einstein condensates r ) 2 r ) = g n ( ~ + n ( ~ r ) Z Mean-field r 0 − ~ r 0 ) e ( ~ r V dd ( ~ r ) n ( ~ d ~ 2 2 e mf (0) = g n 2 0 2 (1 − ε dd f ( κ )) ~ B 2 R z 1.0 0.5 0.0 2 R r f ( κ ) - 0.5 κ = R r - 1.0 R z - 1.5 - 2.0 0.01 0.10 1 10 100 κ 4 Bad Honnef 05/2016

  16. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π 5 Bad Honnef 05/2016

  17. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · 5 Bad Honnef 05/2016

  18. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · e (0) = g n 2 ✓ ◆ 15 √ π (1 + 3 128 √ a 3 √ n 0 0 2 ε 2 1 − ε dd f ( κ ) + dd ) 2 5 Bad Honnef 05/2016

  19. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · e (0) = g n 2 ✓ ◆ 15 √ π (1 + 3 128 √ a 3 √ n 0 0 2 ε 2 1 − ε dd f ( κ ) + dd ) 2 β α 5 Bad Honnef 05/2016

  20. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · e (0) = g n 2 ✓ ◆ 15 √ π (1 + 3 128 √ a 3 √ n 0 0 2 ε 2 1 − ε dd f ( κ ) + dd ) 2 β α for α / β < 0 κ ⌧ 1 , ε dd > 1 Liquid-like state possible! 5 Bad Honnef 05/2016

  21. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · e (0) = g n 2 ✓ ◆ 15 √ π (1 + 3 128 √ a 3 √ n 0 0 2 ε 2 1 − ε dd f ( κ ) + dd ) 2 β α for α / β < 0 κ ⌧ 1 , ε dd > 1 ◆ 2 ✓ α Liquid-like state possible! n 0 ∝ β 5 Bad Honnef 05/2016

  22. Dipolar Bose-Einstein condensates 128 na 3 Q 5 ( ε dd ) √ Beyond mean-field ∆ e = 15 √ π LHY Dipolar enhancement Lima & Pelster , PRA 84 , 041604 (2011), ibid 85 , 063609 (2012) Q 5 ( ε dd ) = 1 + 3 2 ε 2 dd + · · · e (0) = g n 2 ✓ ◆ 15 √ π (1 + 3 128 √ a 3 √ n 0 0 2 ε 2 1 − ε dd f ( κ ) + dd ) 2 β α for α / β < 0 κ ⌧ 1 , ε dd > 1 ◆ 2 ✓ α Liquid-like state possible! n 0 ∝ β See poster by R. Bisset and arXiv:1601.04501 (2016) by F . Wächtler and L. Santos 5 Bad Honnef 05/2016

  23. Dysprosium Bose-Einstein condensates Dysprosium ( 164 Dy) µ = 9 . 93 µ B 6 Bad Honnef 05/2016

  24. Dysprosium Bose-Einstein condensates Dysprosium ( 164 Dy) µ = 9 . 93 µ B a dd = m µ 0 µ 2 Dipolar length 12 π ~ 2 = 132 a 0 Scattering length a a bg = 92(8) a 0 Tang et al. , PRA 92 , 022703 (2015) Maier et al. , PRA 92 , 060702(R) (2015) 6 Bad Honnef 05/2016

  25. Dysprosium Bose-Einstein condensates Dysprosium ( 164 Dy) µ = 9 . 93 µ B a dd = m µ 0 µ 2 Dipolar length 12 π ~ 2 = 132 a 0 Scattering length a a bg = 92(8) a 0 Tang et al. , PRA 92 , 022703 (2015) Maier et al. , PRA 92 , 060702(R) (2015) ε dd = a dd at ε dd = 1 . 42 a bg a 6 Bad Honnef 05/2016

  26. Dysprosium Bose-Einstein condensates Dysprosium ( 164 Dy) µ = 9 . 93 µ B a dd = m µ 0 µ 2 Dipolar length 12 π ~ 2 = 132 a 0 Scattering length a a bg = 92(8) a 0 Tang et al. , PRA 92 , 022703 (2015) Maier et al. , PRA 92 , 060702(R) (2015) ε dd = a dd at ε dd = 1 . 42 a bg a Many Feshbach resonances 10 0 N ( a.u. ) 10 - 1 10 - 2 0 2 4 6 8 10 B ( G ) 6 Bad Honnef 05/2016

  27. Our experiment High resolution phase-contrast imaging, 1 µm resolution at 421 nm (32.5 MHz broad), single shot 7 Bad Honnef 05/2016

  28. Oblate dipolar BECs Trap aspect ratio λ = ω z / ω r = 2 . 9(1) κ > 1 8 Bad Honnef 05/2016

  29. Oblate dipolar BECs Trap aspect ratio λ = ω z / ω r = 2 . 9(1) κ > 1 L. Santos et al. , PRL 90 , 250403 (2003) • Uniform case ( ): κ → ∞ Roton-Maxon dispersion relation Varies with axial trapping and short-range interactions Softening → “roton instability” 8 Bad Honnef 05/2016

  30. Rosensweig / normal field instability of classical ferrofluids Rosensweig, R. Ferrohydrodynamics . Cambridge University Press (1985). 9 Bad Honnef 05/2016

  31. Rosensweig / normal field instability of classical ferrofluids Incompressible, variable magnetization Competition between: Surface tension, gravity vs. dipole-dipole interaction Rosensweig, R. Ferrohydrodynamics . Cambridge University Press (1985). 9 Bad Honnef 05/2016

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend