ab initio description of actinides hund s exchange spin
play

Ab initio description of actinides: Hunds exchange, spin-orbit - PowerPoint PPT Presentation

Ab initio description of actinides: Hunds exchange, spin-orbit coupling and crystal structure Bernard Amadon CEA, DAM, DIF , Arpajon, France www.cea.fr Conference: What about U ? Actinides in the periodic table At atmospheric pressure:


  1. Ab initio description of actinides: Hund’s exchange, spin-orbit coupling and crystal structure Bernard Amadon CEA, DAM, DIF , Arpajon, France www.cea.fr Conference: What about U ?

  2. Actinides in the periodic table At atmospheric pressure: 4 d element: filling of the 4 d band (Bonding states and antibonding): 4 d electrons are delocalized. Lanthanides: 4 f electrons are localized , negligible overlap between 4 f orbitals . Actinide: intermediate case of localization. [Mac Mahan, et al J. Comp.-Aid. Mater. Des. 5, 131 (1998)] — Conference: What about U ? — 2/38

  3. Plutonium has a large number of difference phases. Many phases Some phases with delocalized electrons (low volume) and phases with localized electrons (large volume). Pressure (kbar) 600 2 ) C ( ° e 4 r u t a 400 r 6 e p m 8 e T 200 1.260 δ δ′ ε 1.08 1.191 γ 1.125 1.06 e ζ m u 1.061 l Length 1.04 o V β 1.000 1.02 Pressure Instability . 1.00 6 0 0 0 α 4 2 0 ) 0 C ( ° Pressure (kbar) 4 e r u 2 a t 0 6 r 0 e p m 8 e T 1 0 0 From Kevin T. Moore and Gerrit van der Laan Rev. Mod. Phys. 81, 235 (2009) Figure 16. Plutonium Instability with Temperature and Pressure — Conference: What about U ? — 3/38 Plutonium is notoriously unstable under almost any external disturbance. Over a span of only 600°, it exhibits six different allotropic phases with large accompanying volume changes before it melts. Pressures on the order of kilobar (100 megapascals) are suffi- cient to squeeze out the high-volume allotropes (Morgan 1970). Small chemical additions can stabilize these high-volume phases. (Reproduced with permission from The Metallurgical Society.) Los Alamos Science

  4. α -U, α -Np, and α -Pu are low symmetry phases induced by chemical bonding of f electrons. δ -Pu, Am, and Cm have compact phases (as lanthanides). δ and α Plutonium, have no local moment, ordered or not. (J. C. Lashley, A. Lawson, R. J. McQueeney, and G. H. Lander, Phys. Rev. B 72, 054416 (2005)) — Conference: What about U ? — 4/38

  5. Non magnetic GGA underestimates volume for late actinides 32 Experiment 96 96 GGA (NM) 95,5 95,5 28 3 ) Volume (Å 95 95 24 94,5 94,5 20 94 94 (d) 93,5 93,5 16 93,59494,59595,596 93,59494,59595,596 U Np Am Cm α γ ε δ Pu GGA: Cohesion is overestimated, not enough correlation GGA(AFM) G. Robert, A. Pasturel, and B. Siberchicot et al Journal of Phys: Cond. Matter 15 8377 (2003), A. Kutepov and S. Kutepova J. Magn. Magn. Mater. 272, E329 (2004) GGA+OP P . S¨ oderlind and B. Sadigh Phys. Rev. Lett. 92, 185702 (2004), P . S¨ oderlind al MRS Bull. 35, 883 (2010) LDA+GA N. Lanat` a, Y. Yao, C.-Z. Wang, K.-M. Ho, and G. Kotliar Phys. Rev. X 5, 011008 (2015) GGA+DMFT B. Amadon, Phys. Rev. B 94 , 115148 (2016) — Conference: What about U ? — 5/38

  6. GGA-AFM improves volumes 32 32 Experiment GGA (AFM) GGA+OP (AFM) GGA (NM) 28 28 3 ) Volume (Å 24 24 20 20 (a) (b) (d) 16 16 Am Cm Am Cm U Np Am Cm α γ εδ α γ εδ α γ ε δ Pu Pu Pu GGA-AFM: good description of volumes but magnetism is wrong GGA(AFM) G. Robert, A. Pasturel, and B. Siberchicot et al Journal of Phys: Cond. Matter 15 8377 (2003), A. Kutepov and S. Kutepova J. Magn. Magn. Mater. 272, E329 (2004) GGA+OP P . S¨ oderlind and B. Sadigh Phys. Rev. Lett. 92, 185702 (2004), P . S¨ oderlind al MRS Bull. 35, 883 (2010) LDA+GA N. Lanat` a, Y. Yao, C.-Z. Wang, K.-M. Ho, and G. Kotliar Phys. Rev. X 5, 011008 (2015) GGA+DMFT B. Amadon, Phys. Rev. B 94 , 115148 (2016) — Conference: What about U ? — 6/38

  7. LDA+GA results 32 32 Experiment GGA (AFM) LDA+GA (NM) GGA+OP (AFM) GGA (NM) 28 28 3 ) Volume (Å 24 24 20 20 (a) (b) (c) (d) 16 16 Am Cm Am Cm Am Cm U Np Am Cm α γ εδ α γ εδ α γ εδ α γ ε δ Pu Pu Pu Pu Gutzwiller with U =4.5 eV, J H =0.36 eV: good volumes and magnetism GGA(AFM) G. Robert, A. Pasturel, and B. Siberchicot et al Journal of Phys: Cond. Matter 15 8377 (2003), A. Kutepov and S. Kutepova J. Magn. Magn. Mater. 272, E329 (2004) GGA+OP P . S¨ oderlind and B. Sadigh Phys. Rev. Lett. 92, 185702 (2004), P . S¨ oderlind al MRS Bull. 35, 883 (2010) LDA+GA N. Lanat` a, Y. Yao, C.-Z. Wang, K.-M. Ho, and G. Kotliar Phys. Rev. X 5, 011008 (2015) GGA+DMFT B. Amadon, Phys. Rev. B 94 , 115148 (2016) — Conference: What about U ? — 7/38

  8. GGA+DMFT on Pu Pioneering DFT+DMFT calculation with U =4 eV and J H =0 eV. (S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature (London) 410, 793 (2001)) — Conference: What about U ? — 8/38

  9. Is it possible to describe all actinides with a single framework ? Calculation of effective interactions U and J H with cRPA ? Does DFT+DMFT calculations with cRPA interactions give good structural properties ? What is the role of crystal structure ? Role of SOC and Hund’s exchange J H ? — Conference: What about U ? — 9/38

  10. Self-consistent calculation of U in ABINIT cRPA calculation Compute cRPA dielectric matrix χ r 0 ( r , r ′ , ω ) = X ψ σ ∗ ν ′ k ′ ( r ) ψ σ ∗ ν ′ k ′ ( r ′ ) ψ σ ν k ( r ′ ) ν k ( r ) ψ σ k , k ′ ,ν,ν ′ ,σ f σ ν ′ k ′ − f σ × w ( k , k ′ , ν, ν ′ , σ ) ν k ν k + ω + i δ . ν ′ k ′ − ǫ σ ǫ σ "X # "X # DFT+ U calculation w ( k , k ′ , ν, ν ′ , σ ) = 1 − m k �| 2 m ′ k ′ �| 2 |� Ψ σ ν k | w σ |� Ψ σ ν ′ k ′ | w σ m m ′ Diagonalize H ε r ( ω ) = 1 − v χ r 0 ( ω ) . ⇒ ǫ σ k ,ν ⇒ | Ψ σ k ν � Compute PLO-Wannier Build Hamiltonian P R σ m ν ( k ) = � w R σ k m | Ψ k ν � H U , J H [ n ( r )] | w R σ X k ν � P R σ k m � = | Ψ σ m ν ( k ) ν ∈W Compute density X n ( r ) = Ψ σ k ν ( r ) f σ ν k Ψ σ k ν ( r ) ν, k ,σ Compute effective interaction matrix U σ,σ ′ m 1 w R σ ′ m 2 w R σ ′ m 1 , m 3 , m 2 , m 4 ( ω ) = � w R σ m 3 | ε − 1 ( ω ) v | w R σ m 4 � r Compute static U and J H 2 l + 1 2 l + 1 U = 1 1 U σ,σ ′ X X X m 1 , m 2 , m 1 , m 2 ( 0 ) 4 ( 2 l + 1 ) 2 σ,σ ′ m 1 = 1 m 2 = 1 U , J H 2 l + 1 2 l + 1 J H = 1 1 X X X U σ,σ ′ m 1 , m 2 , m 2 , m 1 ( 0 ) 4 ( 2 l + 1 )( 2 l ) σ,σ ′ m 1 = 1 m 2 = 1 ( m 2 � = m 1 ) F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein PRB 70, 195104 (2004) K. Karlsson, F. Aryasetiawan, and O. Jepsen Phys. Rev. B 81, 245113 (2010) B. Amadon, T. Applencourt, F. Bruneval, Physical Review B 89 , 125110 (2014) — Conference: What about U ? — 10/38

  11. What about U ? U is small for plutonium and americium U Np Pu Am Cm 0.8 1.0 0.95 1.5 3.4 U U diag 1.5 1.7 1.7 2.3 4.3 0.4 0.4 0.45 0.4 0.55 J H U is weaker than expected in Pu and Am — Conference: What about U ? — 11/38

  12. DFT+DMFT in ABINIT DFT+DMFT Loop DFT DFT Compute PLO-Wannier Diagonalize H P R m ν ( k ) = � w R k m | Ψ k ν � ⇒ ǫ k ν | w R X P R k m � = m ν ( k ) | Ψ k ν � ⇒ | Ψ k ν � ν ∈W Build Hamiltonian DMFT Loop DMFT Loop H [ n ( r )] Compute lattice Green’s function ∆Σ R , imp ( i ω n ) = Σ R , imp ( i ω n ) − Σ R dc . mm ′ mm ′ Compute density ν m ( k ) ∆Σ R , imp ∆Σ bl νν ′ k ( i ω n ) = X X P R ∗ ( i ω n ) P R m ′ ν ′ ( k ) mm ′ X Ψ k ν ( r ) G τ = 0 − n ( r ) = νν ′ k Ψ k ν ′ ( r ) R mm ′ i − 1 νν ′ k h G bl νν ′ k ( i ω n ) = ( i ω n + µ − ǫ ν k ) δ νν ′ − k ( i ω n ) bl νν ′ Compute Fermi level µ Compute local quantities ν ′ m ′ ( k ) − Σ R dc − µ ǫ R , imp X P R m ν ( k ) ǫ ν k P R ∗ = mm ′ k ,νν ′ Rotate quantities in the basis where ǫ R , imp is diagonal mm ′ G R , imp X P R m ν ( k ) G bl νν ′ k ( i ω n ) P R ∗ ( i ω n ) = ν ′ m ′ ( k ) mm ′ k ,νν ′ ( i ω n )] − 1 = [ G R , imp ( i ω n )] − 1 + Σ R , imp [ G 0 R , imp ( i ω n ) mm ′ mm ′ mm ′ F R mm ′ ( i ω n ) = i ω n − ǫ R m − [ G 0 R , imp ( i ω n )] − 1 m , m ′ m , m ′ Compute Self-energy Impurity Solver (CTQMC) G R , imp mm ′ ( i ω n ) m , U R ⇒ G R F R mm ′ ( τ ) , ǫ R mm ′ ( τ ) Σ R , imp mm ′ ( i ω n ) B. Amadon Journal of Phys.: Cond. Matter 24 , 075604 (2012). J. Bieder, B. Amadon, Phys. Rev. B 89 , 195132 (2014) — Conference: What about U ? — 12/38

  13. U and J H are used to compute structural properties in DFT+DMFT. 32 32 Experiment GGA (AFM) LDA+GA (NM) GGA+OP (AFM) GGA+DMFT (NM) GGA (NM) 28 28 3 ) Volume (Å 24 24 20 20 (a) (b) (c) (d) 16 16 Am Cm Am Cm Am Cm U Np Am Cm α γ εδ α γ εδ α γ εδ α γ ε δ Pu Pu Pu Pu A good description of structural and magnetic properties GGA(AFM) G. Robert, A. Pasturel, and B. Siberchicot et al Journal of Phys: Cond. Matter 15 8377 (2003), A. Kutepov and S. Kutepova J. Magn. Magn. Mater. 272, E329 (2004) GGA+OP P . S¨ oderlind and B. Sadigh Phys. Rev. Lett. 92, 185702 (2004), P . S¨ oderlind al MRS Bull. 35, 883 (2010) LDA+GA N. Lanat` a, Y. Yao, C.-Z. Wang, K.-M. Ho, and G. Kotliar Phys. Rev. X 5, 011008 (2015) GGA+DMFT B. Amadon, Phys. Rev. B 94 , 115148 (2016) — Conference: What about U ? — 13/38

  14. Comparison with previous works 3 ) V ( ˚ U , J H (eV) B 0 (GPa) A δ -Plutonium GGA 0.00, 0.00 19.8 GGA+DMFT Savrasov et al (2001) 4.00, 0.00 26.5 GGA+DMFT/CTQMC (this work) 4.00, 0.00 25.8 28 — Conference: What about U ? — 14/38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend