a new determination of with cold rubidium atoms
play

Anewdeterminationof withcoldrubidium atoms P. Clad S. - PowerPoint PPT Presentation

Anewdeterminationof withcoldrubidium atoms P. Clad S. Guellati-Khlifa M. Cadoret C. Schwob E. De Mirandes F. Nez L. Julien F. Biraben Laboratoire Kastler Brossel (ENS, CNRS, UPMC) Institut National de


  1. A�new�determination�of� α with�cold�rubidium� atoms P. Cladé S. Guellati-Khélifa M. Cadoret C. Schwob E. De Mirandes F. Nez L. Julien F. Biraben Laboratoire Kastler Brossel (ENS, CNRS, UPMC) Institut National de Métrologie (CNAM)

  2. Determination of the fine�structure�constant� = µ 0 c /2 α R K =h/e 2 = = = quantum Hall effect Solid state Γ Γ ’ p,h-90 Γ Γ physics hfs muonium QED a e = f ( α / π ) g – 2 of the electron (UW) g – 2 of the electron (Harvard) mv=h/ λ h / m h / m(neutron) 2   2 e 2 R A ( X ) h   h / m(Cs) α = = × × ∞ 2 r v r = ħ k/m   πε �   4 c c A ( e ) m h / m(Rb) 0 r X α -1 137.035 990 137.036 000 137.036 010 CODATA 2002 P. Mohr and B. Taylor, RMP, 77 , n°1, p. 1, january 2005 G. Gabrielse et al, PRL, 97 , 030802, 2006

  3. Principle�of�our�experiment�:�measurement� of�the�recoil�velocity N × 2 ħ k measurement selection (Raman transition) (Raman transition) coherent acceleration MOT + molasses 87 Rb 5P 3/2 ∆ � selection of an initial sub-recoil velocity class � coherent acceleration : N Bloch oscillations, momentum transfer 2N ħ k F=2 5S 1/2 F=1 � measurement of the final velocity class σ vr =� σ v /�(2 N ) J.L. Hall, Ch.J. Bordé, K. Uehara, PRL 37 (1976) 1339

  4. Bloch�oscillations Accelerated frame Laboratory frame E�=�P 2 /2m δ ’ =�10�k�v r ν 2 ν 1 δ ’ =�6�k�v r δ ’ =�2�k�v r p � � � 2 k 4 k 6 k � Only one hyperfin level involved : coherent acceleration, per cycle � 2 k � Acceleration ⇔ Bloch oscillations in the fundamental energy band M.�Ben�Dahan et�al�,�PRL,�76 76 (1996)�4508. 76 76

  5. Two possibilities with vertical�beams m Acceleration Vertical standing wave � g ν 2 h ∆ = − × v m mgt N c The atoms oscillate at the same place with the frequency mg up and down accelerations ν = + B � 2 k differential measurement Measurement of h/m gravimeter measurement de h/m independent of g G.�Ferrari�et�al�,�PRL,�97 97 97 (2006)�060402. 97 4000 oscillations in 7 s!

  6. Experimental�sequence� deceleration acceleration MOT detection + molasses selection blow away measurement π -pulse π -pulse beam ( δ sel fixed) ( δ meas tunable) ( ) δ − δ � ∆ = sel meas We measure (Doppler effect) : V ( ) + k k 1 2 ∆ up − ∆ down V V = Acceleration in both opposite directions : v r up + down 2 ( N N ) � k = B v r m ( ) ( ) δ − δ up − δ − δ down � = sel meas sel meas ( ) B up + down + m 2 ( N N ) k k k 1 2

  7. Results Transfer efficiency > 99.95% per oscillation (2 recoils) about 450 Bloch oscillations up and down → 1800 recoils measurements performed in April 2005 1 point = 4 spectra 10 -7 61 statistical uncertainty on α = 4.4×10 -9 1 point = 1 sequence total uncertainty on α = 6.7 ×10 -9 α -1 = 137.035 998 84 (91) Cladé et al, PRL, 96 (2006) 033001

  8. Error�budget Source Correction Uncertainty ( α -1 )(ppb) ( α -1 )(ppb) � Laser frequencies 0 0.8 � Beams alignment - 2 2 � Wave front curvature and Gouy phase - 8.2 4 � 2nd order Zeeman effect 6.6 2 � Quadratic magnetic force - 1.3 0.4 � Gravity gradient - 0.18 0.02 � Light shift (one photon transition) 0 0.2 � Light shift (two photon transition) - 0.5 0.2 � Light shift (Bloch oscillations) 0.46 0.4 � Index of refraction (cold atomic cloud) <0.1 0.3 � Index of refraction (background vapor) - 0.37 0.3 Global systematic effects - 5.49 5.0 Statistical uncertainty 4.4 TOTAL 6.7 Cladé et al (submitted to PRA) α -1 = 137.035 998 84 (91)

  9. Interferometric measurement of the recoil velocity Ramsey interferometer ∆ φ = − = + T b a ( E E ) 2 kT ( v v ) R C � C C R 0 r F=1 ∆ φ = δ v 0 +2v r T laser R F=2 v 0 π /2 π /2 T R ∆ φ = − 4 kT v C R r Ramsey-Bordé interferometer independent of v 0 N π - pulses measure 2v r v 0 +4v r ∆ φ = − + 4 k ( N 1 ) T v v 0 +2v r C R r measure 2 N v r v 0 π /2 π /2 π /2 π /2 120 recoils transferred uncertainty on α = 7.4× 10 -9 A. Wicht, J.M. Hensley, E. Sarajlic and S.Chu, Phys. Scr. T102 , 82 (2002)

  10. v N r 2 Bloch�oscillations�and atomic + v 0 interferometry π /2 π /2 v 0 T R π /2 π /2 v -2Nv 0 T R r N Bloch oscillations π/ 2 π/ 2 π/ 2 π/ 2 acceleration deceleration T R T R detection selection measurement blow away F=2 → F=1 F=1 → F=2 beam -10 -5 0 5 10 -15 -10 -5 0 5 10 15

  11. Preliminary tests = π -pulse duration T R =3.4 ms π /2-pulse duration = 0.3 ms � Raman = 250 GHz and � Bloch = 40 GHz Up to 480 oscillations ! typically : 350 oscillations statistical uncertainty for 5 determinations of α = 7.5×10 -9 promising! h/m Rb at 6.6×10 -8 4 spectra in « Rabi » configuration 4 spectra in « Ramsey » configuration h/m Rb at 2.9×10 -8

  12. Further improvements σ σ = v Statistical uncertainty v r 2N Oscillations de Bloch (at the present time N ~ 480) The number of Bloch oscillations is limited by the atomic longitudinal motion (500 oscillations & 12 ms , 6 cm). Velocity measurement (at the present time σ v ~ 10 -4 v r in 10 minutes) - a new vacuum cell and a 2D-MOT to increase the initial number of atoms. - an actively stabilized anti-vibration plateforme to reduce vibrations. Systematic effects - a µ-metal shielding to reduce residual magnetic fields - a Shack-Hartmann wave front analyser to control the beams curvature ~10 -9

  13. Towards a�redefinition of�the�kilogram The kilogram is the only SI base unit defined in terms of a material artefact It is not invariable at a level of 10 - 8 � ������������ ����������� ������������ ����� ��������������� ������������������������������ �� �������� !��"# One possible way : ● = ν = Fix the Planck constant h and relate mass and time units 2 E h mc Realization of the kg using the watt balance which allows to compare : - a mechanical power (displacement of a mass in the gravity field) Mg v 2 = - to an electrical power 4 ∝ UI R K K J h This realization is based on the validity of the relations : µ h c 2 e = = = Need to be tested ! 0 R K and K J α 2 2 e h Von Klitzing constant Josephson constant

  14. Another possibility ● Fix the Avogadro constant (or the atomic mass unit) ������������� !��"# At the present time, N A is measured through the molar volume of a Si sphere Morever The watt balance gives h/M macro both together can give a competitive value of N A Recoil measurements give h/M atom Recent proposal ● Fix both h and N A ! � ������������ ���������������$��������%�����������& � ����������������������� �� ��!!��!'( !��(#� (on going debate in the community of metrologists) Conclusion Highly precise frequency measurements allow very accurate determinations of fundamental constants leading to a lot of rich developments…

  15. Refractive index Recoil transmitted by one Bloch oscillation : 2 ~ k or 2n ~ k ? Doppler effect for the Raman transitions : 2kv or 2nkv ? ρ : density 3 σ Γ Γ λ   n 2 ( ) ∆ = − = π ρ   Γ : natural width k n 1 ∆ π �   2 2 ∆ : detuning For the cold atoms Initial atomic density : 10 11 atoms/cm 3 Raman beams : ∆ = 1050 GHz : (n-1)= 4.10 -10 (selection) (n-1)<10 -12 (measure) Bloch beams : ∆ = 40 GHz: (n-1)=2.10 -10 (selected atoms) For the background vapor density: 8.10 8 atoms/cm 3 (n-1) ~ 4.10 -10

  16. Index of refraction PRL 94 170403 (2005) (MIT): Photon Recoil Dispersive medium Atoms Momentum in Dispersive Media N tot N 0 N 1 Observation : modification of recoil energy in a dispersive medium (BEC). n : index of N 1 << N tot � � 2(1-n)N 1 /N 0 k 2n k refraction Bloch oscillations : 1 = N if η = 100% = + − � � � 2 2 ( 1 ) 2 p final n k n k k N 0 otherwise ~(1- η )(n-1) Accelerated atoms � dispersive medium Raman transition : ω ’ = ω - kv atom Atomic cloud n + (n-1)kv medium v medium L ω ’ = ω - kv atom + (n-1)k(v medium -v atom ) v atom dL/dt = 0 ⇔ v medium =v atom no effect

  17. Refractive index � Phase of the light (1) at the position of the atom i (x i ) : Φ 1 (x i ) � Two photon transition : Φ = Φ 1 - Φ 2 � Assum: � without dispersive media : Φ (x) = 2 k x � inside the medium : d Φ (x)/dx = 2 nk � uniform medium (N atoms), x m of the center of the medium : x m = Σ i x i /N � at the position x m of the center of the medium effect of refractive index cancel from 1st and 2nd beam Φ = − − m + ( x ) 2 ( n 1 ) k ( x x ) 2 kx One Bloch oscillation : Φ � d ( x ) k = + − ≈ - atom i � � � 2 n k 2 ( 1 n ) 2 n k dx N i Φ � d ( x ) k = − i � 2 ( 1 n ) - medium dx N j Raman transition : Doppler effect Φ d ( x ( t ), t ) → ω = ω − + − − ' 2 kv 2 ( n 1 ) k ( v v ) 0 dt

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend