precision determination of the top quark mass
play

Precision determination of the top-quark mass Sven-Olaf Moch - PowerPoint PPT Presentation

Precision determination of the top-quark mass Sven-Olaf Moch Universit at Hamburg Theoretical Physics Seminar , Liverpool, Mar 04,


  1. Precision determination of the top-quark mass Sven-Olaf Moch Universit¨ at Hamburg ————————————————————————————————————– Theoretical Physics Seminar , Liverpool, Mar 04, 2015 Sven-Olaf Moch Precision determination of the top-quark mass – p.1

  2. Introduction (I) Classical mechanics • Mass is defined as product of density and volume of matter • classical concept Sven-Olaf Moch Precision determination of the top-quark mass – p.2

  3. Introduction (I) Classical mechanics • Mass is defined as product of density and volume of matter • classical concept • The quantity of matter is that which arises jointly from its density and magnitude. A body twice as dense in double the space is quadruple in quantity. This quantity I designate by the name of body or of mass. Newton Sven-Olaf Moch Precision determination of the top-quark mass – p.2

  4. Introduction (I) Classical mechanics • Mass is defined as product of density and volume of matter • classical concept • The quantity of matter is that which arises jointly from its density and magnitude. A body twice as dense in double the space is quadruple in quantity. This quantity I designate by the name of body or of mass. Newton Atomic theory • Mass is conserved Lavoisier • Mass of body is sum of mass of its constituents M ( X ) = N A m a ( X ) Avogadro Sven-Olaf Moch Precision determination of the top-quark mass – p.2

  5. Introduction (II) Kilogram The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram. Orginal des Bureau International des Poids et Mesures • International prototype kilogram (IPK): made in 1889, 39 mm high, alloy of platinum and iridium Sven-Olaf Moch Precision determination of the top-quark mass – p.3

  6. Introduction (II) Kilogram The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram. Orginal des Bureau International des Poids et Mesures • International prototype kilogram (IPK): made in 1889, 39 mm high, alloy of platinum and iridium Special relativity • Equivalence principle E = mc 2 Einstein Sven-Olaf Moch Precision determination of the top-quark mass – p.3

  7. Introduction (II) Kilogram The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram. Orginal des Bureau International des Poids et Mesures • International prototype kilogram (IPK): made in 1889, 39 mm high, alloy of platinum and iridium Special relativity • Equivalence principle E = mc 2 Einstein Standard Model • Higgs boson gives mass to matter fields via Higgs-Yukawa coupling • large top-quark mass m t Sven-Olaf Moch Precision determination of the top-quark mass – p.3

  8. Quantum field theory QCD • Classical part of QCD Lagrangian − 1 � 4 F a µν F µν L = + q i (i / ¯ D − m q ) ij q j b flavors • field strength tensor F a µν and matter fields q i , ¯ q j • covariant derivative D µ,ij = ∂ µ δ ij + i g s ( t a ) ij A a µ • Formal parameters of the theory (no observables) • strong coupling α s = g 2 s / (4 π ) • quark masses m q • Parameters of Lagrangian have no unique physical interpretation • radiative corrections require definition of renormalization scheme Challenge • Suitable observables for measurements of α s , m q , . . . • comparison of theory predictions and experimental data Sven-Olaf Moch Precision determination of the top-quark mass – p.4

  9. Coupling constant renormalization • Running coupling constant α s from radiative corrections, e.g. one loop – anti-screening (color charge of g ) – screening (like in QED) • QCD beta function µ 2 d dµ 2 α s ( µ ) = β ( α s ) running coupling • perturbative expansion α s ( µ ) 0.40 to four loops van Ritbergen, Vermaseren, Larin ‘97 0.35 • very good convergence of perturbative series 0.30 even at low scales 0.25 µ 1.0 1.5 2.0 2.5 3.0 Sven-Olaf Moch Precision determination of the top-quark mass – p.5

  10. Quark mass renormalization • Heavy-quark self-energy Σ( p, m q ) i + + + . . . = Σ Σ Σ p − m q − Σ( p, m q ) / QCD g • QCD corrections to self-energy Σ( p, m q ) t • dimensional regularization D = 4 − 2 ǫ • one-loop: UV divergence 1 /ǫ (Laurent expansion) � µ 2 � ǫ � � � � �� Σ (1) , bare ( p, m q ) = α s − C F 1 3 C F 1 ( / p − m q ) ǫ + fin. + m q ǫ + fin. m 2 4 π q • Relate bare and renormalized mass parameter m bare = m ren + δm q q q = + + + . . . Σ ren ( p, m q ) ( Z ψ − 1) / p − ( Z m − 1) m q Sven-Olaf Moch Precision determination of the top-quark mass – p.6

  11. Quark mass renormalization • Heavy-quark self-energy Σ( p, m q ) i + + + . . . = Σ Σ Σ p − m q − Σ( p, m q ) / W EW sector • EW corrections to top-quark self-energy t t • on-shell intermediate (virtual) W -boson b • m t complex parameter with imaginary part Γ t = 2 . 0 ± 0 . 7 GeV • Γ t > 1 GeV: top-quark decays before it hadronizes Sven-Olaf Moch Precision determination of the top-quark mass – p.6

  12. Mass renormalization scheme Pole mass • Based on (unphysical) concept of top-quark being a free parton • m ren coincides with pole of propagator at each order q � � p − m pole p − m q − Σ( p, m q ) / → / � q � / p = m q • Definition of pole mass ambiguous up to corrections O (Λ QCD ) • heavy-quark self-energy Σ( p, m q ) receives contributions from regions of all loop momenta – also from momenta of O (Λ QCD ) • bound from lattice QCD: ∆ m q ≥ 0 . 7 · Λ QCD ≃ 200 MeV Bauer, Bali, Pineda ’11 MS scheme • MS mass definition • one-loop minimal subtraction � 1 � = m q α s δm (1) 4 π 3 C F ǫ − γ E + ln 4 π q • MS scheme induces scale dependence: m ( µ ) Sven-Olaf Moch Precision determination of the top-quark mass – p.7

  13. Running quark mass Scale dependence • Renormalization group equation for scale dependence • mass anomalous dimension γ known to four loops Chetyrkin ‘97; Larin, van Ritbergen, Vermaseren ‘97 � � µ 2 ∂ ∂µ 2 + β ( α s ) ∂ m ( µ ) = γ ( α s ) m ( µ ) ∂α s • Plot mass ratio m t (163 GeV ) /m t ( µ ) running top quark mass 1.00 m ( µ ) 0.99 0.98 0.97 0.96 90 100 110 120 130 140 150 160 µ Sven-Olaf Moch Precision determination of the top-quark mass – p.8

  14. Scheme transformations • Conversion between different renormalization schemes possible in perturbation theory • Relation for pole mass and MS mass • known to four loops in QCD Gray, Broadhurst, Gräfe, Schilcher ‘90; Chetyrkin, Steinhauser ‘99; Melnikov, v. Ritbergen ‘99; Marquard, Smirnov, Smirnov, Steinhauser ‘15 • EW sector known to O ( α EW α s ) Jegerlehner, Kalmykov ‘04; Eiras, Steinhauser ‘06 • example: one-loop QCD � � 4 � �� � µ 2 1 + α s ( µ ) m pole = m ( µ ) 3 + ln + . . . m ( µ ) 2 4 π Sven-Olaf Moch Precision determination of the top-quark mass – p.9

  15. Top-quark mass What is the value of the top-quark mass ? mt = ? Sven-Olaf Moch Precision determination of the top-quark mass – p.10

  16. Some Answers 17 -1 -1 Tevatron+LHC m combination - March 2014, L = 3.5 fb - 8.7 fb top int ATLAS + CDF + CMS + D0 Preliminary ± CDF RunII, l+jets 172.85 1.12 ± ± (0.52 0.49 0.86) -1 L = 8.7 fb int ± CDF RunII, di-lepton 170.28 3.69 ± (1.95 3.13) -1 L = 5.6 fb int CDF RunII, all jets ± 172.47 2.01 ± ± (1.43 0.95 1.04) -1 L = 5.8 fb int miss CDF RunII, E +jets ± 173.93 1.85 ± ± T (1.26 1.05 0.86) -1 L = 8.7 fb int ± D0 RunII, l+jets 174.94 1.50 ± ± (0.83 0.47 1.16) -1 L = 3.6 fb int D0 RunII, di-lepton ± 174.00 2.79 ± ± (2.36 0.55 1.38) -1 L = 5.3 fb int ± ATLAS 2011, l+jets 172.31 1.55 ± ± (0.23 0.72 1.35) -1 L = 4.7 fb int ATLAS 2011, di-lepton ± 173.09 1.63 ± (0.64 1.50) -1 L = 4.7 fb int ± CMS 2011, l+jets 173.49 1.06 ± ± (0.27 0.33 0.97) -1 L = 4.9 fb int ± CMS 2011, di-lepton 172.50 1.52 ± (0.43 1.46) -1 L = 4.9 fb int CMS 2011, all jets ± 173.49 1.41 ± (0.69 1.23) -1 L = 3.5 fb int ± χ 2 173.34 0.76 ± ± / ndf =4.3/10 World comb. 2014 (0.27 0.24 0.67) χ 2 prob.=93% ± ± ± Comb. 173.20 0.87 Previous Tevatron March 2013 (Run I+II) (0.51 0.36 0.61) ± 173.29 0.95 ± ± (0.23 0.26 0.88) LHC September 2013 total ( stat. iJES syst. ) 1 165 170 175 180 185 m [GeV] top Sven-Olaf Moch Precision determination of the top-quark mass – p.11

  17. World combination Experiment: ATLAS, CDF, CMS & D0 coll. 1403.4427 mt = 173.34 ± 0.76 GeV Sven-Olaf Moch Precision determination of the top-quark mass – p.12

  18. World combination Experiment: ATLAS, CDF, CMS & D0 coll. 1403.4427 mt = 173.34 ± 0.76 GeV In all measurements considered in the present combination, the analyses are calibrated to the Monte Carlo (MC) top-quark mass definition. Sven-Olaf Moch Precision determination of the top-quark mass – p.12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend