potential and lim its of texture measurem ent techniques
play

Potential and Lim its of Texture Measurem ent Techniques for I nlaid - PowerPoint PPT Presentation

Potential and Lim its of Texture Measurem ent Techniques for I nlaid Copper Process Optim ization Holm Geisler, Inka Zienert, Hartmut Prinz, Moritz-Andreas Meyer, Ehrenfried Zschech AMD Saxony LLC & Co. KG, Dresden, Germany Outline


  1. Potential and Lim its of Texture Measurem ent Techniques for I nlaid Copper Process Optim ization Holm Geisler, Inka Zienert, Hartmut Prinz, Moritz-Andreas Meyer, Ehrenfried Zschech AMD Saxony LLC & Co. KG, Dresden, Germany

  2. Outline • Microstructure characterization of inlaid copper interconnects • Texture measurement techniques – X-ray micro-diffraction – OIM: EBSD & ACT • Application – Microstructure monitoring – ECD-filled inlaid structures with new ILDs, capping layers and barrier layers – Texture and stress – Orientation stereology, grain size, grain boundary distribution – Texture in ECD-filled via chains – Texture of barrier and seed layers before ECD filling • Summary 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 2

  3. Microstructure characterization of inlaid copper interconnects • Aluminum vs. inlaid copper: What is different ? • Texture, EM & defects • Microstructure characterization: general concept • Orientation distribution function (ODF) • Quantification 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 3

  4. Texture Al vs. inlaid Cu Al I nlaid Cu Al I nlaid Cu { 111} { 111} { 511} twins { 111} + sidewalls + twins + engaged 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 4

  5. What is different ? Inlaid Copper Interconnects Aluminum Interconnects Twins + Sidewall Bamboo + Columnar ???? Optimum EM Behaviour Large Anisotropy Small Anisotropy E 〈 111 〉 = 1 9 1 GPa E 〈 100 〉 = 6 6 .7 GPa Electroplating Vapour Deposition Cu CMP Metal etch .... .... 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 5

  6. Texture, EM & defects Electromigration: Prevent grain boundaries along the trench direction! = Fast diffusion pathways j � Top view v > v void Sidewall-oriented grains? High-angle grain boundary? 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 6

  7. Microstructure Characterization: General Concept • Microstructure Function:  i ( x ) phase  =  G ( x ) g ( x ) orientatio ns   D ( x ) defects, lattice strain g(x) • Orientation Distribution Function: K B dV / V g = = ϕ Φ ϕ f ( g ) f ( , , ). x 1 2 dg dg x 3 g V x 2 H.J. Bunge K A x 1 (1999, 2001) 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 7

  8. Quantification: ODF approximation ( hkl) pole figure, P( χ , φ ) OD, f( φ 1 , Φ , φ 2 ) Euler angles ϕ 1 , Φ , ϕ 2 (111)+ (200)+ (220) e.g., ADC χ φ P ( , ) χ π 2 1 ∫ χ φ = φ Φ φ P hkl ( , ) f ( , , ) dg ( ) 1 2 π 2 0 dV / V g = = ϕ Φ ϕ f ( g ) f ( , , ). K A : sample coordinates 1 2 dg φ K B : cryst. coord. system [ K. Helming, http: / / www.texture.de/ ] 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 8

  9. Evaluation of pole figures • Computational algorithms for OD analysis – Harmonic Methods: computation in Fourier space – Discrete (Direct) Methods: computation in orientation space: = ∑ N 1 χ φ χ φ ⇐ φ Φ φ K. Pawlik et al. P ( , ) f [( , ) ( , , ) ] h 1 2 i N (1991) = i 1 U.F. Kocks et al. • Commercial software: LaboTex (1998) – based on ADC (Arbitrarily Defined Cells) – direct method, good for sharp textures – quantification of • fibers • engaged fibers • tw ins – uncertainty in determination of random texture component (background, low signal-to-noise ratio) 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 9

  10. Texture measurement techniques • Overview • X-ray micro-diffraction • OIM (Orientation Imaging Microscopy) – EBSD: Electron Backscatter Diffraction – ACT: Automated Crystallography for the TEM 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 10

  11. Texture measurement techniques for inlaid Cu interconnects: Overview • Single Inlaid ACT EBSD • Dual Inlaid EBSD ? µ-XRD ? • Seed • Barrier ACT nano- cryst. µ-XRD EBSD 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 11

  12. Techniques: comparison � Classical Texture, ODF: f ( g ) = f ( ϕ 1 , Φ , ϕ 2 ) • µ-XRD � Phase: i � Strain (Stress): D s � Orientation Stereology: g ( x ) • OIM � Grain Size � Grain-boundary distribution 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 12

  13. Probed volume • Beam diameter between 50µm and several 100µm γ • X-rays � „Bulk“ information, penetration of ILD X-rays: ILD Penetration depth Met n+ 1 > > µm Via n Compared with EBSD: Met n ≤ tens of nm 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 13

  14. Statistics { 1 1 1 } pole figures • X-ray m icro-diffraction RD – Beam diameter d = 100µm � A = π r 2 = 7854 µm 2 X-ray – Test pattern: parallel trenches, w = 180nm, p = 360nm TD – Assumption: mean grain diameter = w (one grain extends over the whole line width and depth) – n = ( L / w ) / (2 Lw ) = 1 / (2 w 2 ) L : length of the line EBSD – n ∼ 15 grains / µm 2 – N = n A ∼ 118000 grains • EBSD – A = 3µm x 10µm = 30 µm 2 – N = n A ∼ 450 grains 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 14

  15. X-ray X-ray micro-diffraction • Arrays of ECD-filled inlaid copper lines • Arrays of ECD-filled inlaid line segments • Arrays of ECD-filled vias (?) • Process monitoring • In-line application 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 15

  16. Texture and stress measurements at inlaid test structures using X-ray micro-diffraction Huber goniometer Bruker AXS D8 micro-diffraction tool with ¼ Eulerian cradle, PolyCap and area detector (GADDS) Video + laser for accurate height adjustment • Tool perform ance: • large detector area with high detector sensitivity (80% quantum efficiency) • small area beam focus with high intensity • Test structures: • blanket or structured thin film samples from 120 x 120 µm 2 up to 10 x 10 mm 2 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 16

  17. X-ray micro-diffraction on arrays of inlaid Cu lines or Narrow inlaid Wide inlaid Cu lines Cu lines Inlaid structure Copper lines SiN, SiCN > 120µm Barrier Si(F)O, X-ray beam Metal 1 SiCOH 80µm Ø Silicon Video camera + laser beam � alignment 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 17

  18. X-ray µ-diffraction on arrays of Cu lines and line segments � geometry effects Narrow Cu lines and line segments – width = 180nm 10µm x 10µm 10µm x 10µm 10µm x 10µm 4.3µm x 4.3µm 10µm x 10µm X-ray beam ~ 8 0 - 1 0 0 µm Ø { 111} { 111} { 111} { 111} ....... I t should w ork on dense via good good poor bad arrays 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 18

  19. X-ray microstructure monitoring: Arrays of inlaid copper lines { 111} - narrow copper lines (180nm) RD • ILD = Si(F)O • SiN etch stop TD • Metal 1 • sharp { 111} fiber • engaged component { 111} - wide copper lines (1.8µm) • { 511} twins • sidewall-oriented grains negligible • Stability of process of record RD Week TD 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 19

  20. Texture components in Cu lines {111} Blanked Trenches {110} {112} Cu SiO 2 {111} {111} Si (-110) (-1-12) Sketch of (111) (0-11) Pole Figure Sym m etry equivalent, 7 0 .5 ° Engaged ( 1 1 1 ) lattice ( 1 1 1 ) planes Fiber Texture Sym m etry equivalent, 7 0 .5 ° 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 20

  21. Texture Components in copper lines Tilted sidewalls {111} {111} {111} {111} (-110) (0-11) (-1-12) (-211) {111} {111} {111} (-110) (-211) Sketch of (-1-12) { 1 1 1 } pole figure (0-11) 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 21

  22. Texture Components in copper lines {111} {111} Superposition sidewall + fiber 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 22

  23. 1 st generation twins { 5 1 1 } : 1 st generation tw ins { 1 1 1 } pole figure Additional circles @ 38.9°, 56.2° and 70.5° in { 111} pole figure { 511} { 111} Twin { 111} center peak 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 23

  24. 2 nd generation twins { 5 7 1 3 } : 2 nd generation tw ins { 1 1 1 } pole figure Additional circles @ 22.19°, 56.25° and 65.95° in { 111} pole figure { 5 7 13} { 111} Twin { 111} centre peak 03/ 26/ 03 ICCM, March 24 - 28, 2003, Austin, Texas Holm Geisler 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend