please do course evaluation lc and rlc circuits
play

Please Do Course Evaluation LC and RLC Circuits Oscillation Spring - PowerPoint PPT Presentation

Please Do Course Evaluation LC and RLC Circuits Oscillation Spring Potential energy Kinetic energy 1 1 2 2 kx mv 2 2 k Conservation of energy: m 1 1 2 2 kx mv constant 2 2 1 1 2 2 kA or mv max 2 2


  1. Please Do Course Evaluation

  2. LC and RLC Circuits

  3. Oscillation ‐ Spring Potential energy  Kinetic energy 1 1 2 2 kx mv 2 2 k Conservation of energy: m 1 1   2 2 kx mv constant 2 2 1 1  2 2 kA or mv max 2 2 2 d  Equation of motion: m x - kx 2 dt k       Solution: x A sin ( t ) with m

  4. Oscillation – LC circuit Electric energy  Magnetic energy 2 1 1 Q 2 LI 2 2 C Conservation of energy: C L 1 1 1   2 2 Q LI constant 2 C 2 1 1 1  2 2 Q or LI max max 2 C 2 2 dI 1 d Q 1      Kirchhoff’s rule : L Q Q 2 dt C C dt Solution: Solve the differential equation!

  5. Similarity between Spring Oscillation and LC Oscillation I

  6. Similarity between Spring Oscillation and LC Oscillation II k C m L Potential energy  Kinetic energy Electric energy  Magnetic energy 1 1 2 1 Q 1 2 2 kx mv 2 LI 2 2 2 C 2 Newton’s Law Kirchhoff’s rule: 2 d 2  dI 1 d Q 1 m x - kx      L Q Q 2 dt 2 dt C dt C 2 1 Q 1 2 Potential energy Electrical energy kx 2 C 2 1 1 2 mv Kinetic energy Magnetic energy 2 LI 2 2 1 Spring constant k 1/Capacitance C Mass m Inductance L Displacement x Charge Q dQ I  dx v  Velocity v Current I dt dt

  7. Class 42 More LC Circuiturrrent

  8. Oscillation – LC circuit Electric energy  Magnetic energy 2 1 1 Q 2 LI 2 2 C Conservation of energy: C L 1 1 1   2 2 Q LI constant 2 C 2 2 dI 1 d Q 1      Kirchhoff’s rule : L Q L Q 2 dt C C dt k       Solution: x A sin ( t ) with m 1 1        Q A sin ( t ) with LC LC

  9. RLC circuit RLC circuit Damped Oscillation k m Friction = ‐ bv Equation of motion : Kirchhoff' s rule : 2 d d Q dI d       0 IR L (I Q ) m x - bv - kx (v x ) 2 C d t dt dt dt 2 d d Q 2 d d         L Q R Q 0 m x b x kx 0 2 dt C dt 2 dt dt

  10. RLC circuit and Mechanical Oscillation RLC circuit Mechanical Q x I = dQ/dt v = dx/dt C 1/k R b L m Magnetic energy ½LI 2 Kinetic energy ½mv 2 Electrical energy ½(1/C)Q 2 Potential energy ½kx 2

  11. RLC circuit RLC circuit Solution: R - t   2L Q(t) Q e cos 0 d 2   1 R      d   LC 2L   0 under damped 2    1 R      0 critically damped   LC 2L    0 over damped Kirchhoff' s rule : Q dI d     0 IR L (I Q ) C d t dt 2 d d Q     L Q R Q 0 2 dt C dt

  12. Damping R - t    d real: under damped 2L Q(t) Q e cos 0 d  d = 0: critically damped  d imaginary: overdamped 2   1 R      d   LC 2L

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend