pinning down versus density
play

Pinning Down versus Density Lajos Soukup Alfrd Rnyi Institute of - PowerPoint PPT Presentation

Pinning Down versus Density Lajos Soukup Alfrd Rnyi Institute of Mathematics Hungarian Academy of Sciences http://www.renyi.hu/ soukup Novi Sad Conference in Set Theory and General Topology joint work with I. Juhsz, J. van Mill and Z.


  1. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A�

  2. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω .

  3. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω .

  4. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n

  5. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n .

  6. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n . • Then G ( n , f , A n , f ) ∩ D = ∅ .

  7. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � � ω . Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n . • Then G ( n , f , A n , f ) ∩ D = ∅ . • Thus D is not dense.

  8. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� •

  9. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . •

  10. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. •

  11. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X •

  12. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . •

  13. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U •

  14. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . •

  15. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  16. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  17. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  18. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  19. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  20. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) ⊂ R ω • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  21. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) ⊂ R ω • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) • Then R ∩ X n ∩ G ( n p , f p , A p ) � = ∅ . •

  22. Some observations

  23. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | .

  24. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | .

  25. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | . Questions • Can d ( X ) be a regular cardinal? • Can | X | be a regular cardinal?

  26. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | . Questions • Can d ( X ) be a regular cardinal? • Can | X | be a regular cardinal? Modified construction: pd ( X ) = cf ( | X | ) < d ( X ) = cf ( d ( X )) < ∆( X ) = | X |

  27. Shelah’s Strong Hypothesis

  28. Shelah’s Strong Hypothesis • µ > cf ( µ )

  29. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ }

  30. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} .

  31. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} . • pp ( µ )= sup { cf ( � a / D ) : a ∈ S ( µ ) , D ∈ U ( a )) }

  32. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} . • pp ( µ )= sup { cf ( � a / D ) : a ∈ S ( µ ) , D ∈ U ( a )) } Shelah’s Strong Hypothesis: pp ( µ ) = µ + for all singular cardinal µ .

  33. An equiconsistency result

  34. An equiconsistency result Theorem (I. Juhász, L.S., Z. Szentmiklóssy) The following three statements are equiconsistent : (i) There is a singular cardinal λ with pp ( λ ) > λ + , i.e. Shelah’s Strong Hypothesis fails; (ii) there is a 0-dimensional Hausdorff space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) ; (iii) there is a topological space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) .

  35. An equiconsistency result Theorem (I. Juhász, L.S., Z. Szentmiklóssy) The following three statements are equiconsistent : (i) There is a singular cardinal λ with pp ( λ ) > λ + , i.e. Shelah’s Strong Hypothesis fails; (ii) there is a 0-dimensional Hausdorff space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) ; (iii) there is a topological space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) . No equivalence: Con(failure of SSH + the limit cardinals are strong limit)

  36. Connected and locally connected spaces

  37. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X.

  38. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups.

  39. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces?

  40. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that

  41. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that • there is a 0-dimensional space X with pd ( X ) < d ( X )

  42. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that • there is a 0-dimensional space X with pd ( X ) < d ( X ) • pd ( X ) = d ( X ) for all connected Tychonoff spaces.

  43. A connected, locally connected Tychonoff example

  44. A connected, locally connected Tychonoff example If X is a connected, Tychonoff space then | X | ≥ 2 ω .

  45. A connected, locally connected Tychonoff example If X is a connected, Tychonoff space then | X | ≥ 2 ω . Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy) T:F.A.E: (1) There is a singular cardinal µ ≥ 2 ω which is not a strong limit cardinal. (2) There is a connected, locally connected Tychonoff space X with ∆( X ) = | X | and pd ( X ) < d ( X ) .

  46. A connected, locally connected Tychonoff example If X is a connected, Tychonoff space then | X | ≥ 2 ω . Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy) T:F.A.E: (1) There is a singular cardinal µ ≥ 2 ω which is not a strong limit cardinal. (2) There is a connected, locally connected Tychonoff space X with ∆( X ) = | X | and pd ( X ) < d ( X ) . (3) There is a pathwise connected, locally pathwise connected Tychonoff Abelian topological group X with ∆( X ) = | X | and pd ( X ) < d ( X ) .

  47. Embedding theorem

  48. Embedding theorem • µ is a singular cardinal µ ≥ 2 ω , not a strong limit cardinal.

  49. Embedding theorem • µ is a singular cardinal µ ≥ 2 ω , not a strong limit cardinal. • Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with ∆( H ) = | H | and pd ( H ) < d ( H ) .

  50. Embedding theorem • µ is a singular cardinal µ ≥ 2 ω , not a strong limit cardinal. • Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with ∆( H ) = | H | and pd ( H ) < d ( H ) . • there is a 0-dimensional neat space X such that pd ( X ) < d ( X ) and | X | ≥ 2 ω .

  51. Embedding theorem • µ is a singular cardinal µ ≥ 2 ω , not a strong limit cardinal. • Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with ∆( H ) = | H | and pd ( H ) < d ( H ) . • there is a 0-dimensional neat space X such that pd ( X ) < d ( X ) and | X | ≥ 2 ω . Theorem Let X be a T 3 . 5 neat space such that | X | ≥ 2 ω . Then X has a closed embedding into a T 3 . 5 Abelian topological group H such that

  52. Embedding theorem • µ is a singular cardinal µ ≥ 2 ω , not a strong limit cardinal. • Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with ∆( H ) = | H | and pd ( H ) < d ( H ) . • there is a 0-dimensional neat space X such that pd ( X ) < d ( X ) and | X | ≥ 2 ω . Theorem Let X be a T 3 . 5 neat space such that | X | ≥ 2 ω . Then X has a closed embedding into a T 3 . 5 Abelian topological group H such that 1. d ( X ) = d ( H ) , 2. pd ( X ) = pd ( H ) , 3. H is neat, 4. H is pathwise connected and locally pathwise connected.

  53. Step 1: embedding into a group

  54. Step 1: embedding into a group If X is a T 3 . 5 -space, then F ( X ) and A ( X ) denote the free topological group and the free abelian topological group on X .

  55. Step 1: embedding into a group If X is a T 3 . 5 -space, then F ( X ) and A ( X ) denote the free topological group and the free abelian topological group on X . F ( X ) is a topological group containing (a homeomorphic copy of) X such that 1. X generates F ( X ) algebraically, 2. every continuous function f : X → H , where H is any topological group, can be extended to a continuous homomorphism ¯ f : F ( X ) → H .

  56. Step 1: embedding into a group If X is a T 3 . 5 -space, then F ( X ) and A ( X ) denote the free topological group and the free abelian topological group on X . F ( X ) is a topological group containing (a homeomorphic copy of) X such that 1. X generates F ( X ) algebraically, 2. every continuous function f : X → H , where H is any topological group, can be extended to a continuous homomorphism ¯ f : F ( X ) → H . Similarly for A ( X ) .

  57. Step 1: embedding into a group If X is a T 3 . 5 -space, then F ( X ) and A ( X ) denote the free topological group and the free abelian topological group on X . F ( X ) is a topological group containing (a homeomorphic copy of) X such that 1. X generates F ( X ) algebraically, 2. every continuous function f : X → H , where H is any topological group, can be extended to a continuous homomorphism ¯ f : F ( X ) → H . Similarly for A ( X ) . The existence of these groups was proved by Markov.

  58. Step 1: embedding into a group If X is a T 3 . 5 -space, then F ( X ) and A ( X ) denote the free topological group and the free abelian topological group on X . F ( X ) is a topological group containing (a homeomorphic copy of) X such that 1. X generates F ( X ) algebraically, 2. every continuous function f : X → H , where H is any topological group, can be extended to a continuous homomorphism ¯ f : F ( X ) → H . Similarly for A ( X ) . The existence of these groups was proved by Markov. Theorem (JvMSSz) Let X be a T 3 . 5 -space. Then d ( X ) = d ( F ( X )) = d ( A ( X )) . If X is neat, then so are A ( X ) and F ( X ) , and pd ( X ) = pd ( A ( X )) = pd ( F ( X )) .

  59. Step 2: embedding a group into a pathwise connected one

  60. Step 2: embedding a group into a pathwise connected one • Hartman Mycielski construction

  61. Step 2: embedding a group into a pathwise connected one • Hartman Mycielski construction • Let ( G , · , e ) be a Tychonoff topological group. G • = f ∈ [ 0 , 1 ) G : � for some sequence 0 = a 0 < a 1 < · · · < a n = 1 � f is constant on [ a k , a k + 1 ) for every k = 0 , . . . , n − 1 .

  62. Step 2: embedding a group into a pathwise connected one • Hartman Mycielski construction • Let ( G , · , e ) be a Tychonoff topological group. G • = f ∈ [ 0 , 1 ) G : � for some sequence 0 = a 0 < a 1 < · · · < a n = 1 � f is constant on [ a k , a k + 1 ) for every k = 0 , . . . , n − 1 . • Define ∗ on G • by ( f ∗ g )( x ) = f ( x ) · g ( x ) for all f , g ∈ G • and x ∈ [ 0 , 1 ) .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend