pinning down versus density
play

Pinning Down versus Density Lajos Soukup Alfrd Rnyi Institute of - PowerPoint PPT Presentation

Pinning Down versus Density Lajos Soukup Alfrd Rnyi Institute of Mathematics Hungarian Academy of Sciences http://www.renyi.hu/ soukup Twelfth Symposium on General Topology and its Relations to Modern Analysis and Algebra joint work


  1. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A�

  2. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω .

  3. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω .

  4. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n

  5. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n .

  6. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n . • Then G ( n , f , A n , f ) ∩ D = ∅ .

  7. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: d ( X ) = ω ω . • Assume | D | < ω ω . • | D | < ω n for some n • there is f ∈ P such that D ∩ X m ⊂ f ( m ) × ω for m ≥ n . • Then G ( n , f , A n , f ) ∩ D = ∅ . • Thus D is not dense.

  8. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� •

  9. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . •

  10. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. •

  11. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X •

  12. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . •

  13. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U •

  14. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . •

  15. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  16. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . • R = { g ( n ) : n ∈ ω } × ω pins down U • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  17. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  18. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  19. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  20. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) ⊂ R ω • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) •

  21. • X = � ω ω × ω, τ � • X n = ( ω n \ ω n − 1 ) × ω . • P = � ( ω n \ ω n − 1 ) . � � �� � If n ∈ ω , f ∈ P , A ⊂ ω let G ( n , f , A )= ω m \ f ( m ) × A . m ≥ n � ω . � Fix an independent family A = { A n , f : n ∈ ω, f ∈ P }⊂ ω Clopen subbase: { G ( n , f , A n , f ) : n ∈ ω, f ∈ P . } If ∅ � = U ⊂ open X then G ( n , f , A ) ⊂ U for some n ∈ ω , f ∈ � , A U ∈ �A� Claim: pd ( X ) = ω . X n ω n • U : X → τ be a NEA. • Then U ( p ) ⊃ G ( n p , f p , A p ) for all p ∈ X g ( n ) ⊂ R ω • there is g ∈ P s.t. f p < ∗ g for all p ∈ X . U ( p ) ⊃ f p ( n ) • R = { g ( n ) : n ∈ ω } × ω pins down U A p • Let p ∈ X . Then U ( p ) ⊃ G ( n p , f p , A p ) . • ∃ n ≥ n p s.t. f p ( n ) < g ( n ) • Then R ∩ X n ∩ G ( n p , f p , A p ) � = ∅ . •

  22. Some observations

  23. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | .

  24. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First pd-examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | .

  25. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First pd-examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | . Questions • Can d ( X ) be a regular cardinal? • Can | X | be a regular cardinal?

  26. Some observations If pd ( X ) < d ( X ) , then ∃ Y ⊂ open X s.t. pd ( Y ) < d ( Y ) and ∆( Y ) = | Y | . First pd-examples: pd ( X ) = cf ( | X | ) < d ( X ) = ∆( X ) = | X | . Questions • Can d ( X ) be a regular cardinal? • Can | X | be a regular cardinal? Modified construction: pd ( X ) = cf ( | X | ) < d ( X ) = cf ( d ( X )) < ∆( X ) = | X |

  27. Shelah’s Strong Hypothesis

  28. Shelah’s Strong Hypothesis • µ > cf ( µ )

  29. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ }

  30. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} .

  31. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} . • pp ( µ )= sup { cf ( � a / D ) : a ∈ S ( µ ) , D ∈ U ( a )) }

  32. Shelah’s Strong Hypothesis • µ > cf ( µ ) • S ( µ ) = { a ∈ [ µ ∩ Reg ] cf ( µ ) : sup a = µ } • U ( a ) = { D : D is an ultrafilter on a , D ∩ J bd [ a ] = ∅} . • pp ( µ )= sup { cf ( � a / D ) : a ∈ S ( µ ) , D ∈ U ( a )) } Shelah’s Strong Hypothesis: pp ( µ ) = µ + for all singular cardinal µ .

  33. An equiconsistency result

  34. An equiconsistency result Theorem (I. Juhász, L.S., Z. Szentmiklóssy) The following three statements are equiconsistent : (i) There is a singular cardinal λ with pp ( λ ) > λ + , i.e. Shelah’s Strong Hypothesis fails; (ii) there is a 0-dimensional Hausdorff space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) ; (iii) there is a topological space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) .

  35. An equiconsistency result Theorem (I. Juhász, L.S., Z. Szentmiklóssy) The following three statements are equiconsistent : (i) There is a singular cardinal λ with pp ( λ ) > λ + , i.e. Shelah’s Strong Hypothesis fails; (ii) there is a 0-dimensional Hausdorff space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) ; (iii) there is a topological space X such that | X | = ∆( X ) is a regular cardinal and pd ( X ) < d ( X ) . No equivalence: Con(failure of SSH + the limit cardinals are strong limit)

  36. Connected and locally connected spaces

  37. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X.

  38. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups.

  39. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces?

  40. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that

  41. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that • there is a 0-dimensional space X with pd ( X ) < d ( X )

  42. Connected and locally connected spaces Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy ) T:F.A.E: (1) 2 κ < κ + ω for each cardinal κ , (2) pd ( X ) = d ( X ) for each T 2 space X, (3) pd ( X ) = d ( X ) for each 0-dimensional T 2 space X. (4) pd ( X ) = d ( X ) for all connected, locally connected regular spaces. (5) pd ( X ) = d ( X ) for all Abelian topological groups. What about connected Tychonoff spaces? Theorem (JvMSSz) It is consistent that • there is a 0-dimensional space X with pd ( X ) < d ( X ) • pd ( X ) = d ( X ) for all connected Tychonoff spaces.

  43. A connected, locally connected Tychonoff pd-example

  44. A connected, locally connected Tychonoff pd-example If X is a connected, Tychonoff space then | X | ≥ 2 ω .

  45. A connected, locally connected Tychonoff pd-example If X is a connected, Tychonoff space then | X | ≥ 2 ω . Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy) T:F.A.E: (1) There is a singular cardinal µ ≥ 2 ω which is not a strong limit cardinal. (2) There is a neat, connected, locally connected Tychonoff space X with singular ∆( X ) = | X | and pd ( X ) < d ( X ) .

  46. A connected, locally connected Tychonoff pd-example If X is a connected, Tychonoff space then | X | ≥ 2 ω . Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy) T:F.A.E: (1) There is a singular cardinal µ ≥ 2 ω which is not a strong limit cardinal. (2) There is a neat, connected, locally connected Tychonoff space X with singular ∆( X ) = | X | and pd ( X ) < d ( X ) . (3) There is a neat, pathwise connected, locally pathwise connected Tychonoff Abelian topological group X with singular ∆( X ) = | X | and pd ( X ) < d ( X ) .

  47. Extension theorems

  48. Extension theorems connected T 3 pd-example connected, locally connected T 3 pd-example 0-dimensional pd-example group pd-example locally pathwise connected T 3 . 5 group pd-example

  49. Extension theorems connected T 3 pd-example (2) (1) connected, locally connected T 3 pd-example 0-dimensional pd-example (3) group pd-example (4) locally pathwise connected T 3 . 5 group pd-example

  50. T 3 pd-example = ⇒ connected T 3 pd-example

  51. T 3 pd-example = ⇒ connected T 3 pd-example • Assume that X is a T 3 pd-example.

  52. T 3 pd-example = ⇒ connected T 3 pd-example • Assume that X is a T 3 pd-example. • Ciesielski and Wojciechowsk: there is a separable connected T 3 space P of size ω 1

  53. T 3 pd-example = ⇒ connected T 3 pd-example • Assume that X is a T 3 pd-example. • Ciesielski and Wojciechowsk: there is a separable connected T 3 space P of size ω 1 • Fix p ∈ P . The underlying set of Z is � � X × ( P \ { p } ) ∪ {∞} .

  54. T 3 pd-example = ⇒ connected T 3 pd-example • Assume that X is a T 3 pd-example. • Ciesielski and Wojciechowsk: there is a separable connected T 3 space P of size ω 1 • Fix p ∈ P . The underlying set of Z is � � X × ( P \ { p } ) ∪ {∞} . • Topology on X × ( P \ { p } ) in Z is the product topology. A basic neighborhood of ∞ has the form � � X × ( U \ { p } ) ∪ {∞} , where U is any neighborhood of p in P .

  55. T 3 pd-example = ⇒ connected T 3 pd-example • Assume that X is a T 3 pd-example. • Ciesielski and Wojciechowsk: there is a separable connected T 3 space P of size ω 1 • Fix p ∈ P . The underlying set of Z is � � X × ( P \ { p } ) ∪ {∞} . • Topology on X × ( P \ { p } ) in Z is the product topology. A basic neighborhood of ∞ has the form � � X × ( U \ { p } ) ∪ {∞} , where U is any neighborhood of p in P . • Theorem: Z is connected T 3 , d ( X ) = d ( Z ) and pd ( X ) = pd ( Z ) .

  56. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example

  57. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X

  58. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X • L is linked system if any two of its members meet.

  59. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X • L is linked system if any two of its members meet. • λ X = {L : L is a maximal linked family of of closed subsets of X . }

  60. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X • L is linked system if any two of its members meet. • λ X = {L : L is a maximal linked family of of closed subsets of X . } • For A ⊂ X let A + = {M ∈ λ X : ( ∃ M ∈ M )( M ⊂ A ) } .

  61. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X • L is linked system if any two of its members meet. • λ X = {L : L is a maximal linked family of of closed subsets of X . } • For A ⊂ X let A + = {M ∈ λ X : ( ∃ M ∈ M )( M ⊂ A ) } . • closed subbase of λ X : { A + : A is closed in X }

  62. connected T 3 pd-example = ⇒ connected, loc. connected T 3 pd-example • de Groot introduced the superextension of X denoted by λ X • L is linked system if any two of its members meet. • λ X = {L : L is a maximal linked family of of closed subsets of X . } • For A ⊂ X let A + = {M ∈ λ X : ( ∃ M ∈ M )( M ⊂ A ) } . • closed subbase of λ X : { A + : A is closed in X } • λ f X = {L ∈ λ X : ∃ M ∈ [ X ] <ω ( ∀ L ∈ L ) L ∩ M ∈ L}

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend