pinning down the inner radiative
play

Pinning Down the Inner Radiative Correction in Beta Decays - PowerPoint PPT Presentation

Pinning Down the Inner Radiative Correction in Beta Decays Chien-Yeah Seng Helmh mhol oltz-Ins Insti titut tut fr Strahl hlen- und und Ke Kernp nphysik and nd Bet ethe Cen enter for or Theor eoretical Physics, Universit tt


  1. Pinning Down the Inner Radiative Correction in Beta Decays Chien-Yeah Seng Helmh mhol oltz-Ins Insti titut tut für Strahl hlen- und und Ke Kernp nphysik and nd Bet ethe Cen enter for or Theor eoretical Physics, Universitä tät t Bonn “Current and Future Status of the First-Row CKM Unitarity” workshop, UMass Amherst, Amherst, USA. 1 17 May, 2019

  2. Out utline 1.The Inner Radiative Correction 2.Dispersive Approach 3.First-Principle Calculation 4.Summary 2

  3. 1. T The he Inne nner Ra Radia iativ ive Co Correction

  4. The he I Inne nner Ra Radia iativ ive Co Correctio ion Extraction of V ud ud from be beta d ta decays: • (1) Superallow owed ed be beta ta decay ay • ft values corrected by nuclear structure effects: see Misha’s talk (2) Neutr tron on be beta ta decay • “nucleus-independent” correction “outer” correction: sensitive to electron spectrum: see Leendert’s talk “Inner er r radiativ tive e correc ection tion”: the part of radiativ tive e correc ection tion ( (RC) • which is insensitive to the electron spectrum 4

  5. The he I Inne nner Ra Radia iativ ive Co Correctio ion Main source of uncertainty in inner RC: γ W-box ox diagram • Sensitive to loop momentum q at ALL scales! The “model-dependent” piece involves the axial component of the charged weak current: 5

  6. The he I Inne nner Ra Radia iativ ive Co Correctio ion Previous best determination: Marciano and Sirlin (M&S) S) • Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002 Write the RC as a single-variable integral over Q 2 , and identify the • dominant physics as a function of Q 2 . 1. Short distance: leadin ing OPE + perturbativ tive e QCD 2. Intermediate distance: VM VMD-in inspir ired ed inter erpol olatin ting function tion + 100% uncer 100% erta tainty 3. Long distance: Elastic ic contr trib ibution tion ∆ = Combined: V ( M & S ) 0 . 02361 ( 38 ) R 6

  7. 2. Dis Dispersive Ap Approach CYS, M.Gorchtein, H.H.Patel and M.J.Ramsey-Musolf, Phys.Rev.Lett. 121 (2018) no. 24, 241804 CYS, M.Gorchtein and M.J.Ramsey-Musolf, arXiv:1812.03352

  8. Dispersiv Dis ive Ap Approach T 3 depends on virtual al i inte termed ediate e state states: theoretical modeling is less • transparent Disp sper ersi sive e tr treatm atmen ents s to box diagrams are developed since the last • ten years, relating the former to matrix elements of on on-shel ell inter termed ediat ate e state states Hadronic tensor in inclusive scattering: We need only the contribution from the iso sosc scal alar EM curren ent ( (0) • 8

  9. Dispersiv Dis ive Ap Approach Disp sper ersi sion on r relati ation on: • Box diagrams are expressed in terms of the “First st Nac achtma mann • mo momen ment” of F 3 (0) : Central result!!! 9

  10. Dis Dispersiv ive Ap Approach Iso sosp spin sy symmet mmetry: • where the fl flavor or-diagon onal s stru ruct cture re f funct ction ons F F 3 N N are defined through: involving the interference between the FULL electrom romagnet etic c curren rrent and the ISOVECT VECTOR a R axia ial curren ent: 10

  11. Dis Dispersiv ive Ap Approach A “ph “phase e spa pace” e” di diagram f m for F r F 3 (0 (0) Elastic VDM Multi-Hadron States Regge 11

  12. Dis Dispersiv ive Ap Approach Elastic: (isoscalar) magnatic Sach FF and axial FF Z.Ye, J.Arrington, R.J.Hill and G.Lee, Phys.Lett.B777,8 (2018) B.Bhattacharya, R.J.Hill and G.Paz,Phys.Rev.D84,073006 (2011) DIS: polarized Bjorken sum rule +pQCD correction (mere change of integration limit) N π+ Resonance: Negligible (Only I=1/2 intermediate states contributes) 12

  13. Dis Dispersiv ive Ap Approach Multi ti-had hadron on s states es: Regge gge mod odel el + + VDM W W W n p N N 13 (I=1)*(I=0) (I=1)*(I=1)

  14. Dis Dispersiv ive Ap Approach Matching the 1 st Nachtmann moment of the (I=1)*(I=1) piece to ν p/ ν bar p scattering data 14 (I=1)*(I=0) piece is then deduced using Regge model+VDM

  15. Dis Dispersiv ive Ap Approach Significant increase in the multi-hadron contribution compare to M&S result, with reduced uncertainty : 15

  16. Dis Dispersiv ive Ap Approach Reduced hadronic uncertainty in the determin mination tion o of V ud ud : • CYS, M.Gorchtein, H.H.Patel and M.J.Ramsey-Musolf, Phys.Rev.Lett. 121 (2018) no. 24, 241804 CYS, M.Gorchtein and M.J.Ramsey-Musolf, arXiv:1812.03352 (assume nothing else changes; using V us in PDG) Possi ssibl ble e issu ssues: • Quality of the neutrino data? • Residual model-dependence? • 16 which leads to the discussions below.

  17. Dis Dispersiv ive Ap Approach Reduced hadronic uncertainty in the determin mination tion o of V ud ud : • CYS, M.Gorchtein, H.H.Patel and M.J.Ramsey-Musolf, Phys.Rev.Lett. 121 (2018) no. 24, 241804 CYS, M.Gorchtein and M.J.Ramsey-Musolf, arXiv:1812.03352 (assume nothing else changes; using V us in PDG) Possi ssibl ble e issu ssues: • Quality of the neutrino data? • Residual model-dependence? • 17 which leads to the discussions below.

  18. 3. F Fir irst-Princ incip iple le Ca Calc lcula ulatio ion CYS and U.G-Meissner, hep-ph/1903.07969 (to appear in PRL)

  19. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Recall the that we are interested in as a function of Q 2 . • Neutrino data helps identifying dominant contri ributor ors a at differ eren ent Q Q 2 : Therefore, to remove the hadronic uncertainties in the box diagrams, we • need to have a good handle of the first N st Nac achtma mann mo mome ment o t of F 3 at at moder erate e Q 2 . Question: is there a way to calculate from FIR FIRST-PR PRIN INCIPLE IPLE? • 19

  20. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Difficult because it involves a a su sum m of al all o on-sh shel ell inter termed mediate te state states. s. • Recently-developed techniques in lattice calculation of PDFs (quasi- • PDF, pseudo-PDF, lattice cross-section etc) do not apply because they rely on OPE that holds only at large Q 2 . We wish to avoi oid direc ect calculation ons of of fou four-poi oint f function tions (noisy • contractions, complicated finite-volume effect…) 20 J. Liang, K-F. Liu and Y-B. Yang, EPJ Web Conf. 175 (2018) 14014

  21. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion A more promising approach is through the Feynman an-Hel ellma lmann • theor eorem em (F (FHT HT): Shif ift in in energy le level el  matr matrix elemen ment. Extraction of energy levels on • lattice are more straightforward, avoid complicated contraction diagrams. Momen entum transfer fer could be introduced through period odic ic exter ernal l • poten tenti tial. Shows great potential in studies of: • Nucleon axial charge and sigma term • EM form factors • Compton amplitude • P-even structure functions • Chambers et al., PRL 118, 242001 (2017) Hadron resonances • …… • 21

  22. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion A more promising approach is through the Feynman an-Hel ellma lmann • theor eorem em (F (FHT HT): Shif ift in in energy le level el  matr matrix elemen ment. Extraction of energy levels on • lattice are more straightforward, avoid complicated contraction diagrams. Momen entum transfer fer could be introduced through period odic ic exter ernal l • poten tenti tial. Shows great potential in studies of: • Nucleon axial charge and sigma term • EM form factors • Compton amplitude • P-even structure functions • Chambers et al., PRL 118, 242001 (2017) Hadron resonances • …… • 22

  23. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Some warm-up: Kinematics: “Off-shell condition”: Off-shell Consider a period odic ic potentia tial: • The off-shell condition prohibits mixing of degenerate states through • perturbation. Thus, non-degenerate perturbation theory at 1 st -order gives: No f No fir irst-or order er e energ rgy s shift! t! 23

  24. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Our Strategy: Introduce TWO TWO periodic source terms, and study the SECO ECOND ND • ORD RDER ENRG ENRGY SHIFT: v CYS and U.G-Meissner, hep-ph/1903.07969 Plugging it into the dispersion relation of T 3 N : • Central result!!! FHT DR 2 nd order Generalized Forward Structure Function Energy shift Compton tensor 24

  25. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Isolating the inelastic contribution: First Nachtmann moment: Elastic Inelastic Energy shift: Elastic Inelastic Elastic piece fully described by form factors (experiment + lattice): Inelastic contribution starts from the pion production threshold: Small at small Q 2 ! 25

  26. Fir irst-Princ incip iple le Ca Calc lcul ulatio ion Lattice momenta are discret ete: • Requiring Q 2 at the hadronic scale and the off-shell condition imply: • A concret ete e examp ample: impose the • restriction: Liu et al., Phys.Rev.D 96 (2017) 054516 Q 2 ≈0.38GeV 2 Allowed values for ω: Pion production threshold : 26 (assume physical pion mass)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend