new calabi yau 3 folds and their mirrors via conifold
play

New Calabi-Yau 3-folds and their mirrors via conifold transitions - PowerPoint PPT Presentation

New Calabi-Yau 3-folds and their mirrors via conifold transitions Maximilian Kreuzer / Vienna University of Technology Work with V. Batyrev (T ubingen): ... conifold transitions / /arXiv:0802.3376 [math.AG] : Integral


  1. New Calabi-Yau 3-folds and their mirrors via conifold transitions Maximilian Kreuzer / Vienna University of Technology Work with • V. Batyrev (T¨ ubingen): ... conifold transitions / /arXiv:0802.3376 [math.AG] − ′′ − : Integral cohomology & mirror symmetry / • /arXiv:math.AG/0505432 • V. Braun , B.A. Ovrut (U.Penn) and E. Scheidegger (Augsburg) Worldsheet instantons, torsion curves, non-perturbative superpotentials arXiv:hep-th/0703134, hep-th/0703182, 0704.0449 [hep-th] • A. Klemm (Bonn), E. Riegler (Vienna) and E. Scheidegger (Augsburg) Topological strings, CICYs & threshold corrections / /arXiv:hep-th/0410018 Supported by the Austrian Research Fund FWF 1

  2. Content • Motivation to study the web of Calabi-Yau manifolds • Geometry and Combinatorics: Reflexive Polytopes • Torsion in Cohomology: Fundamental MS ← → Brauer group � more torsion in H ∗ • Beyond hypersurfaces: Complete Intersections more general singularities ⊆ Reflexive Cones: ↔ classification rigid CYs • Beyond toric CYs: Mirror Pairs via Conifold Transitions – Results: surprisingly many new CYs with small h 11 1-parameter case: topologies & PF opertors – Construction: combinatorial → 30241 cases with h 11 ≈ 4 • ToDo, ToFindOut & ToApply 2

  3. Why should we classify Calabi-Yau 3-folds? • Math: important part of the classificaiton of 3-folds • Strings: Model building – Heterotic: fundamental groups, torsion / / symmetric CYs (?) – Orientifolds: exceptional divisors / / more generic singularities (?) – F-theory: elliptic 4-folds / / ∃ too many: bottom up classification (?) • What do we know? – only examples (finiteness ?); except: elliptic case [M. Gross] – but Reid’s phantasie: connected by singular transitions • Toric hypersurfaces: + very numerous (largest known list) + very conveneint (combinatorics, MS) − very special !!! + connected ⇒ use as backbone of the web 3

  4. Conifold transitions • Candelas, Green, Hubsch ’90: Other worlds are just around the corner • Greene, Morrison, Strominger ’95: Black hole condensation /N=2 SUSY • Danielsson ’07: ... landscape topography / N=1 • w/Batyrev [0802.3376]: – mirror to Candelas et al., blow down P 1 → flat deformation toric hypersurface → reduce h 11 – generalizing:Batyrev, Ciocan-Fontanine, Kim, van Straten: Mirror symmetry for complete intersections in Grassmannians & Flag manifolds via toric degenerations • Combinatorial conditions: • 2-faces are minimal triangles or squares • smoothing condition: rank of matrix of linear relations 473 800 776 reflexive polyhedra: 4.5GB ... 1 day on desktop / 2-3 days on laptop 30241 new examples of (presumed) mirror pairs 4

  5. Geometry and combinatorics: hep-th/0612307 affine coord. t i = z i /z 0 ∈ R n ⊆ P n • Quintic in P 4 : z 5 0 + . . . + z 5 4 = 0 i on patch U i ∼ homogeneous polynomial p ( z ) ⇒ f ( t j ) = p ( z j ) /z d = R n • C ∗ scaling: line bundle O ( d ): g ij = ( z i z j ) d ... monomial transition function – quasi-homogeneous: weighted projective W P n – multi-quasi-homogeneous: toric variety P Σ (for simplicial fan) c m � t � m � • f ( t i ) = Newton polytope ∆ ∈ M R m ∈ M ∼ = Z n of exponent vectors � m ∈ ∆ ∩ M � z v ij • affine coordinates t i = � v ij = � e i , v j � . . . v j ∈ N = M ∗ j , j � m,v j � t m i • Monomials: ξ m = � = � z polytope ∇ = � v j � ⊆ N R i j i j fan Σ of cones over ∇ ∇ = ∆ ∗ reflexive • { f = 0 } is Calabi-Yau ⇔ � m, v j � ≥ − 1 . . . 5

  6. Singularities: the Z n quotient C [ X, Y ] / Z n : X → e 2 πi/n X Y → e 2 πi/n Y ✻ ✍ ✂ ✂ ✍ ✂ ✂ r r r r r r r r ❅ ✂ ✂ ❅ ✂ ✂ Z 3 ✁ ✕ resolution r r r r r r r r ❅ ✲ ✂ ✲ ✂ ✁ ❅ ✂ ✂ ✁ ✒ � r r r r r r r r (subdivision) ❅ ✂ ✂ ✁ � ❅ ✲ ✂ ✲ � ✁ ✂ ✲ r r r r r r r r ˜ X = X 1 , Y 1 = X 2 , . . . Y 3 = ˜ ˜ Invariant X 3 , X 2 Y, XY 2 , Y 3 X = X 3 , Y X ˜ ˜ X 6 , X 5 Y, X 4 Y 2 , . . . Y = X 2 Y , transition: Y 2 = Y 1 /X 1 , . . . new coordinates z j cheating: subdivision of cone σ ⊂ N R with σ ∈ Σ dual to the cone σ ∨ ⊂ M R of monomials X, Y, . . . conifold: xy = zw . . . σ ∨ ∈ M R vs. triangulation of σ ∈ N R , cf. hep-th/0612307 Theorem: • P Σ is smooth iff all cones are simplicial and unimodular • V ol ( θ k ) > 1 for k -face θ k ∈ Σ ⇔ singularity of dimension n − k − 1 because: # of vanishing homogeneous coordinates ⇒ e.g. facet ↔ point 6

  7. Toric (hypersurface) dictionary: • hypersurface f ∆ = 0 ⇔ ∆ is reflexive • (toric) fibration ⇔ ∃ reflexive section of ∇ ⊂ N R v j ∈ Σ (1) • divisors ⇔ • Hodge numbers ⇔ lattice points on θ k • fundamental group ⇔ index of sublattices � pt’s � Z • . . . ⇔ . . . 7

  8. Torsion in (co)homology w/V. Batyrev [math.AG/0505432] • Universal coefficient theorem tor( H i ( X, Z )) ∼ = tor( H i +1 ( X, Z )) ∗ tor( H i ( X, Z )) ∼ = tor( H 2 d − i ( X, Z )) • Poincar´ e duality: • 3-folds ⇒ two independent torsion groups: = tor H 2 ( X, Z ) ∗ (related to fundamental group) tor H 1 ( X, Z ) ∼ = tor H 3 ( X, Z ) ∗ (topological Brauer group) tor H 2 ( X, Z ) ∼ Conjecture: The torsion subgroups of H 2 and H 3 are exchanged under the mirror involution • verified for all 473 800 776 toric Calabi–Yau hypersurfaces: 16 + 16 cases: elliptically fibered: P 2 × P 2 [3 , 3] / Z 3 and P 11133 [9] / Z 3 , P 4 [5] / Z 5 , 13 × π 1 ( X ) = Z 2 (elliptic-K3 fibered) • fundamental group ↔ index of sublattice � codim-2 points � Z (Brauer group) 2 ↔ index of sublattice � codim-3 points � Z i.e. points on edges of ∇ 8

  9. Torsion curves for the “Heterotic standard model” with V. Braun, B. Ovrut and E. Scheidegger • Schoen CY: (3,3) parameter, fiber product of two elliptic fibers over P 1 • complete intersection: P 2 × P 2 × P 1 � 3 0 1 � ⇒ Batyrev-Borisov mirror 0 3 1 • free Z 3 phase (toric) × Z 3 permutation (non-toric) group action • Self-mirror! ⇒ Z 3 × Z 3 torsion curves (spectral sequence computation) • Application: torsion curves cannot be holomorphic vs. Beasley–Witten no-go single curve in homology class! → SUSY breaking & moduli stabilization Lessons for CYs: • need codimension > 1 for having both fundamental + Brauer group • for large torsion in H ∗ Candelas et al’s ’88 list of CICYs in products of P n ’s is a good starting point (don’t need complicated polytopes) 9

  10. Apropos complete intersections • f 1 = . . . = f r = 0 ⇒ Minkowski sum ∆ = ∆ 1 + . . . + ∆ r • Batyrev-Borisov mirror duality: ∇ = ∇ 1 + . . . + ∇ r where ∆ ∗ = �∇ 1 , . . . , ∇ r � conv ∆ = ∆ 1 + . . . + ∆ r � ∆ i , ∇ j � ≥ − δ ij ∇ ∗ = � ∆ 1 , . . . , ∆ r � conv ∇ = ∇ 1 + . . . + ∇ r hypersurface � t i f i = 0 complement Cayley trick: CICY f i = 0 ↔ Reflexive Gorenstein cones of dimension n + r for CY n − r dual M R ⊇ ˜ ˜ ∇ = Conv( e j , ∇ j ) ⊆ ˜ ˜ N R ∼ = R n + r ∆ = Conv( e i , ∆ i ) ↔ Batyrev, Nill: Combinatorial aspects of mirror symmetry [math/0703456]: • Split Gorenstein cone ⇒ CY n − r fold (codimension r) • Rigid CY: only one cone is split, the mirror is “generalized” CY in the sense of 1990s • ∃ classification algorithm (work in progress) 10

  11. Nef partitions & Batyrev–Borisov duality r r r ∆ ◦ ∈ N i z � m,v i � → coordinates z i � sections ∼ m ∈ ∆ Π r r r i r r r r r r r r ∆ ∈ M = N ∗ → line bundles ↔ equations r r r r r r r r r r ⇒ CICY: decompose ∆ = ∆ 1 + ∆ 2 (Minkowski sum) V.V. Batyrev & L.A. Borisov [alg-geom/9412017]: − NEF partitions: piecewise linear convex “support functions” ϕ j ( e i ) = δ ij numerically effective → ample line bundles − combinatorial duality ↔ mirror symmetry ... 4 reflexive polytopes:  ∆ ∗ = �∇ 1 , ∇ 2 � ∆ = ∆ 1 + ∆ 2 ≥ − 1 if i = j  � ∆ i , ∇ j � = ∇ ∗ = � ∆ 1 , ∆ 2 � ∇ = ∇ 1 + ∇ 2 ≥ 0 if i � = j  ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉ 11

  12. Mirror symmetry: duality extends to Hodge data V.V.Batyrev, L.A.Borisov: alg-geom/9509009 ¯ ( − ) ρ x t ρ y t ( − 1) p + q h pq t p ¯ t q = � � y , t ¯ t ) B ( I ; t − 1 , ¯ t ) S ( C ∗ S ( C x , t ) ( t ¯ t ) r I =[ x,y ] − C x , C y ∈ face lattice of Gorenstein cone spanned by ( e i , ∆ i ) − B ( I ) encodes combinatorics of the sublattice I = [ x, y ] with x < y m ∈ C x t deg( m ) − S ( C x , t ) = (1 − t ) ρ x � related to the Erhart polynomial nef.x ( ∈ PALP) by Erwin Riegler [math.AG/0103214, math.CS/0204356]: Batyrev’s formula for codimension r = 1: codim 1 - divisors do not intersect � � h 11 = l (∆ ∗ ) − 1 − d − l ∗ ( θ ∗ ) + l ∗ ( θ ∗ ) l ∗ ( θ ) cd ( θ ∗ )=1 cd ( θ ∗ )=2 for r > 1 a combinatorial characterization of intersecting divisors is missing ! 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend