calabi yau metrics and the spectrum of the laplace
play

Calabi-Yau Metrics and the Spectrum of the Laplace Operator Volker - PowerPoint PPT Presentation

Calabi-Yau Metrics and the Spectrum of the Laplace Operator Volker Braun Department of Physics University of Pennsylvania (soon: DIAS, Dublin) 16 July 2008 Introduction Introduction 1 String Theory Interesting Things to Calculate


  1. Calabi-Yau Metrics Donaldson’s Algorithm Balanced Metrics h is “balanced” if the matrices representing the metrics coincide, that is: �� �� β ≤ N = h − 1 s α , s β 1 ≤ α, ¯ Theorem Let h be the balanced metric for each k. Then the sequence of metrics � h α ¯ ω k = ∂ ¯ β s α ¯ ∂ ln s ¯ β converges to the Calabi-Yau metric as k → ∞ . Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 11 / 61

  2. Calabi-Yau Metrics Donaldson’s Algorithm T-Operator How to solve �� �� − 1 s α , s β = h ? Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 12 / 61

  3. Calabi-Yau Metrics Donaldson’s Algorithm T-Operator How to solve �� �� − 1 s α , s β = h ? Donaldson’s T-operator: � � T ( h ) α ¯ β = s α , s β � s α ¯ s ¯ β = � h α ¯ z ) dVol β s α ( z )¯ β (¯ s ¯ Q Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 12 / 61

  4. Calabi-Yau Metrics Donaldson’s Algorithm T-Operator How to solve �� �� − 1 s α , s β = h ? Donaldson’s T-operator: � � T ( h ) α ¯ β = s α , s β � s α ¯ s ¯ β = � h α ¯ z ) dVol β s α ( z )¯ β (¯ s ¯ Q One can show that iterating T ( h n ) − 1 = h n + 1 converges! Fixed point is balanced metric. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 12 / 61

  5. Calabi-Yau Metrics Implementation Donaldson’s Algorithm Pick a basis of sections s α Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 13 / 61

  6. Calabi-Yau Metrics Implementation Donaldson’s Algorithm Pick a basis of sections s α Iterate h = T ( h ) − 1 where � s α ¯ s ¯ β T ( h ) α ¯ β = dVol s α h α ¯ β ¯ s ¯ Q β Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 13 / 61

  7. Calabi-Yau Metrics Implementation Donaldson’s Algorithm Pick a basis of sections s α Iterate h = T ( h ) − 1 where � s α ¯ s ¯ β T ( h ) α ¯ β = dVol s α h α ¯ β ¯ s ¯ Q β The approximate Calabi-Yau metric is � s α h α ¯ j = ∂ i ¯ β ¯ g i ¯ ∂ ¯ j ln s ¯ β Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 13 / 61

  8. Calabi-Yau Metrics Implementation Details Exact Calabi-Yau volume form � d 4 z dVol = Ω ∧ ¯ Ω , Ω = Q ( z ) Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 14 / 61

  9. Calabi-Yau Metrics Implementation Details Exact Calabi-Yau volume form � d 4 z dVol = Ω ∧ ¯ Ω , Ω = Q ( z ) Integrate by summing over random points. [Douglas,Karp,Lukic,Reinbacher] Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 14 / 61

  10. Calabi-Yau Metrics Implementation Details Exact Calabi-Yau volume form � d 4 z dVol = Ω ∧ ¯ Ω , Ω = Q ( z ) Integrate by summing over random points. [Douglas,Karp,Lukic,Reinbacher] Implemented in C++ Parallelizable (MPI) Use 10 node dual-core Opteron cluster (Evelyn Thomson, ATLAS). Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 14 / 61

  11. Calabi-Yau Metrics Testing the Metric Testing the Result How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that Ω ∧ ¯ Ω ∼ ω 3 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 15 / 61

  12. Calabi-Yau Metrics Testing the Metric Testing the Result How do we test whether the metric is the Calabi-Yau metric? We could compute the Ricci tensor, but its easier to test that Ω ∧ ¯ Ω ∼ ω 3 So normalize both volume forms and define � � � � 1 − Ω ( z ) ∧ ¯ � � Ω (¯ z ) � � σ k = � dVol ω 3 ( z , ¯ z ) Q On a Calabi-Yau manifold σ k = O ( k − 2 ) Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 15 / 61

  13. 0 . 5 σ k Fit for k ≥ 3: σ k = 3 . 23 / k 2 − 4 . 55 / k 3 0 . 4 0 . 3 σ 0 . 2 0 . 1 0 k = k = k = k = k = k = k = k = k = 0 1 2 3 4 5 6 7 8

  14. The Z 5 × Z 5 Quotient Outline Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 Symmetric Quintics Invariant Theory The Laplace Operator 4 Pretty Pictures 5 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 17 / 61

  15. The Z 5 × Z 5 Quotient Symmetric Quintics Symmetric Quintics The Fermat quintic is part of a 5-dimensional family of quintics with a free Z 5 × Z 5 group action. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 18 / 61

  16. The Z 5 × Z 5 Quotient Symmetric Quintics Symmetric Quintics The Fermat quintic is part of a 5-dimensional family of quintics with a free Z 5 × Z 5 group action. It is numerically much easier to work on the �� � four-generation quotient Q Z 5 × Z 5 . �� �� � � Q = � Q Z 5 × Z 5 , O Q ( k ) = O e Q ( k ) Z 5 × Z 5 . Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 18 / 61

  17. The Z 5 × Z 5 Quotient Symmetric Quintics Symmetric Quintics The Fermat quintic is part of a 5-dimensional family of quintics with a free Z 5 × Z 5 group action. It is numerically much easier to work on the �� � four-generation quotient Q Z 5 × Z 5 . �� �� � � Q = � Q Z 5 × Z 5 , O Q ( k ) = O e Q ( k ) Z 5 × Z 5 . To do this, we only have to replace the sections s α of Q ( k ) by invariant sections! O e = H 0 � � Z 5 × Z 5 H 0 � � � Q , O Q ( k ) Q , O e Q ( k ) Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 18 / 61

  18. The Z 5 × Z 5 Quotient Symmetric Quintics Symmetry Group � z 0 � � 0 0 0 0 1 � � z 0 � z 1 z 1 1 0 0 0 0 g 1 = z 2 z 2 0 1 0 0 0 z 3 z 3 0 0 1 0 0 z 4 z 4 0 0 0 1 0   1 0 0 0 0 � z 0 � � z 0 � 2 π i  0 e 0 0 0  5 z 1 z 1   e 2 2 π i g 2 = z 2 z 2 0 0 5 0 0   z 3 z 3 e 3 2 π i 0 0 0 0 z 4 5 z 4 e 4 2 π i 0 0 0 0 5 2 π i Note that g 1 g 2 g − 1 1 g − 1 5 , so they generate the = e 2 Heisenberg group 0 → Z 5 → G → Z 5 × Z 5 → 0 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 19 / 61

  19. The Z 5 × Z 5 Quotient Invariant Theory Invariant Theory The invariant sections are C [ z 0 , z 1 , z 2 , z 3 , z 4 ] G Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 20 / 61

  20. The Z 5 × Z 5 Quotient Invariant Theory Invariant Theory The invariant sections are 100 � C [ z 0 , z 1 , z 2 , z 3 , z 4 ] G = η i C [ θ 1 , θ 2 , θ 3 , θ 4 , θ 5 ] i = 1 (“Hironaka decomposition”) Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 20 / 61

  21. The Z 5 × Z 5 Quotient Invariant Theory Invariant Theory The invariant sections are 100 � C [ z 0 , z 1 , z 2 , z 3 , z 4 ] G = η i C [ θ 1 , θ 2 , θ 3 , θ 4 , θ 5 ] i = 1 (“Hironaka decomposition”) where def z 5 0 + z 5 1 + z 5 2 + z 5 3 + z 5 θ 1 = 4 def θ 2 z 0 z 1 z 2 z 3 z 4 = def z 3 0 z 1 z 4 + z 0 z 3 1 z 2 + z 0 z 3 z 3 4 + z 1 z 3 2 z 3 + z 2 z 3 θ 3 3 z 4 = def z 10 0 + z 10 1 + z 10 2 + z 10 3 + z 10 θ 4 = 4 def z 8 0 z 2 z 3 + z 0 z 1 z 8 3 + z 0 z 8 2 z 4 + z 8 1 z 3 z 4 + z 1 z 2 z 8 θ 5 = 4 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 20 / 61

  22. The Z 5 × Z 5 Quotient Invariant Theory Secondary Invariants ... and the “secondary invariants” η i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30: def η 1 = 1 def = z 2 0 z 1 z 2 2 + z 2 1 z 2 z 2 3 + z 2 2 z 3 z 2 4 + z 2 3 z 4 z 2 0 + z 2 4 z 0 z 2 η 2 1 . . . def = z 30 0 + z 30 1 + z 30 2 + z 30 3 + z 30 η 100 4 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 21 / 61

  23. The Z 5 × Z 5 Quotient Invariant Theory Secondary Invariants ... and the “secondary invariants” η i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30: def η 1 = 1 def = z 2 0 z 1 z 2 2 + z 2 1 z 2 z 2 3 + z 2 2 z 3 z 2 4 + z 2 3 z 4 z 2 0 + z 2 4 z 0 z 2 η 2 1 . . . def = z 30 0 + z 30 1 + z 30 2 + z 30 3 + z 30 η 100 4 All invariants are in degrees divisible by 5 No invariant sections in O e Q ( k ) unless 5 | k ? Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 21 / 61

  24. The Z 5 × Z 5 Quotient Invariant Theory Secondary Invariants ... and the “secondary invariants” η i are polynomials in degrees 0, 5, 10, 15, 20, 25, 30: def η 1 = 1 def = z 2 0 z 1 z 2 2 + z 2 1 z 2 z 2 3 + z 2 2 z 3 z 2 4 + z 2 3 z 4 z 2 0 + z 2 4 z 0 z 2 η 2 1 . . . def = z 30 0 + z 30 1 + z 30 2 + z 30 3 + z 30 η 100 4 All invariants are in degrees divisible by 5 No invariant sections in O e Q ( k ) unless 5 | k ? Q ( k ) only equivariant if 5 | k . O e Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 21 / 61

  25. The Laplace Operator Outline Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 The Laplace Operator 4 Solving the Laplace Equation Example: P 3 Pretty Pictures 5 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 22 / 61

  26. The Laplace Operator Solving the Laplace Equation The Laplace-Beltrami Operator The scalar Laplace operator � � � � � φ i � φ i ∆ = λ i Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 23 / 61

  27. The Laplace Operator Solving the Laplace Equation The Laplace-Beltrami Operator The scalar Laplace operator � � � � � φ i � φ i ∆ = λ i In terms of some (non-orthogonal) basis of functions { f s } , we can write � � � � �� � � � ˜ � φ i � f t = f t φ i t Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 23 / 61

  28. The Laplace Operator Solving the Laplace Equation The Laplace-Beltrami Operator The scalar Laplace operator � � � � � φ i � φ i ∆ = λ i In terms of some (non-orthogonal) basis of functions { f s } , we can write � � � � �� � � � ˜ � φ i � f t = f t φ i t (Generalized) eigenvalue equation � � � � � φ i � φ i ∆ = λ i � � � � � � � � � � � � � � ∆ � f t � ˜ � f t � ˜ ⇒ f s f t φ i = λ i f s f t φ i � �� � � �� � � � v v Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 23 / 61

  29. The Laplace Operator Solving the Laplace Equation Spherical Harmonics Using an approximate finite basis { f s } , we only have to solve the generalized eigenvalue problem � � � � � � � � � � ∆ � f t � f t f s v = λ i f s v Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 24 / 61

  30. The Laplace Operator Solving the Laplace Equation Spherical Harmonics Using an approximate finite basis { f s } , we only have to solve the generalized eigenvalue problem � � � � � � � � � � ∆ � f t � f t f s v = λ i f s v Nice basis: Recall that P 4 = S 9 � U ( 1 ) So take the U ( 1 ) -invariant spherical harmonics on S 9 . Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 24 / 61

  31. The Laplace Operator Solving the Laplace Equation Homogeneous Coordinates In homogeneous coordinates, the spherical harmonics are � �� � degree k monomial degree k monomial � � k | z 0 | 2 + | z 1 | 2 + | z 2 | 2 + | z 3 | 2 + | z 4 | 2 So, for example k = 1 on P 1 : z 0 ¯ z 1 ¯ z 0 ¯ z 1 ¯ z 0 z 0 z 1 z 1 Homog. | z 0 | 2 + | z 1 | 2 | z 0 | 2 + | z 1 | 2 | z 0 | 2 + | z 1 | 2 | z 0 | 2 + | z 1 | 2 ¯ x ¯ 1 x x x Inhomog. 1 + | x | 2 1 + | x | 2 1 + | x | 2 1 + | x | 2 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 25 / 61

  32. Example: P 3 The Laplace Operator Example: P 3 Analytic result: Multiplicities of eigenvalues � n + 3 � 2 � n + 2 � 2 µ n = − , n = 0 , 1 , . . . n n − 1 Eigenvalues (normalize Vol P 3 = 1) λ n , 0 = · · · = λ n ,µ n − 1 = 4 π √ n ( n + 3 ) 3 6 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 26 / 61

  33. Example: P 3 The Laplace Operator Example: P 3 Analytic result: Multiplicities of eigenvalues � n + 3 � 2 � n + 2 � 2 µ n = − , n = 0 , 1 , . . . n n − 1 Eigenvalues (normalize Vol P 3 = 1) λ n , 0 = · · · = λ n ,µ n − 1 = 4 π √ n ( n + 3 ) 3 6 Numeric result: k = 3, N p = 100 , 000. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 26 / 61

  34. Spectrum on P 3 : k = 3 , N p = 100 , 000 140 120 λ n 100 80 60 40 20 Eigenvalues k = 3, N p = 100 , 000 0 0 50 100 150 200 250 300 350 400 n

  35. Spectrum on P 3 : k = 3 200 Eigenvalues, k = 3 150 µ 3 = 300 λ 72 π √ 3 6 100 µ 2 = 84 40 π √ 3 6 50 µ 1 = 15 16 π √ 3 6 µ 0 = 1 0 10000 100000 1e+06 N p

  36. Spectrum on P 3 : N p = 100 , 000 300 µ 5 = 1911 276.622 λ 250 µ 4 = 825 200 193.635 150 µ 3 = 300 124.48 100 µ 2 = 84 69.1554 50 µ 1 = 15 27.6622 µ 0 = 1 0 0 0 1 2 3 4 5 k

  37. Pretty Pictures Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 The Laplace Operator 4 Pretty Pictures 5 Random Quintic Fermat Quintic Quintic Quotient Families Differential Forms Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 30 / 61

  38. Pretty Pictures Random Quintic Random Quintic Now, take some quintic Q ( z ) = ( − 0 . 3192 + 0 . 7096 i ) z 5 0 + ( − 0 . 3279 + 0 . 8119 i ) z 4 0 z 1 + ( 0 . 2422 + 0 . 2198 i ) z 4 0 z 2 + · · · + ( − 0 . 2654 + 0 . 1222 i ) z 5 4 with 126 random (nonzero) coefficients. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 31 / 61

  39. Pretty Pictures Random Quintic Random Quintic Now, take some quintic Q ( z ) = ( − 0 . 3192 + 0 . 7096 i ) z 5 0 + ( − 0 . 3279 + 0 . 8119 i ) z 4 0 z 1 + ( 0 . 2422 + 0 . 2198 i ) z 4 0 z 2 + · · · + ( − 0 . 2654 + 0 . 1222 i ) z 5 4 with 126 random (nonzero) coefficients. No symmetry expect all eigenvalues to have multiplicity 1. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 31 / 61

  40. Pretty Pictures Random Quintic Random Quintic Now, take some quintic Q ( z ) = ( − 0 . 3192 + 0 . 7096 i ) z 5 0 + ( − 0 . 3279 + 0 . 8119 i ) z 4 0 z 1 + ( 0 . 2422 + 0 . 2198 i ) z 4 0 z 2 + · · · + ( − 0 . 2654 + 0 . 1222 i ) z 5 4 with 126 random (nonzero) coefficients. No symmetry expect all eigenvalues to have multiplicity 1. Metric: k h = 8. Integrate T-operator using 3 , 000 , 000 points. Normalize Vol ( Q ) = 1. Laplacian: k φ = 3. Integrate using N p = 200 , 000 points. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 31 / 61

  41. Random Quintic: k φ = 3 , N p = 200 , 000 200 λ n 150 100 50 Eigenvalues on random quintic 0 0 100 200 300 400 500 n

  42. Random Quintic: N p = 200 , 000 200 Eigenvalues λ 150 100 50 0 0 1 2 3 k φ

  43. Pretty Pictures Random Quintic Weyl’s Formula Theorem (Weyl) � d � � = 384 π 3 � d λ d / 2 2 Γ = ( 4 π ) 2 + 1 n lim , n Vol n →∞ where d [= 6 ] is the dimension of the manifold. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 34 / 61

  44. Pretty Pictures Random Quintic Weyl’s Formula Theorem (Weyl) � d � � = 384 π 3 � d λ d / 2 2 Γ = ( 4 π ) 2 + 1 n lim , n Vol n →∞ where d [= 6 ] is the dimension of the manifold. Independent check on the volume normalization. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 34 / 61

  45. Weyl’s Limit 25000 k φ = 1 k φ = 2 20000 k φ = 3 λ 3 n n 15000 384 π 3 10000 5000 0 0 100 200 300 400 500 n

  46. Pretty Pictures Random Quintic Massive Gravitons Consider KK modes of the graviton that are spin-2 in 4 dimensions: � h 10 d h 4 d n ,µν ( x 0 , x 1 , x 2 , x 3 ) · φ 6 d µν = n ( y 1 , . . . , y 6 ) n Mass m n = √ λ n . Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 36 / 61

  47. Pretty Pictures Random Quintic Massive Gravitons Consider KK modes of the graviton that are spin-2 in 4 dimensions: � h 10 d h 4 d n ,µν ( x 0 , x 1 , x 2 , x 3 ) · φ 6 d µν = n ( y 1 , . . . , y 6 ) n Mass m n = √ λ n . Gravitational potential between two test masses M 1 and M 2 : ∞ � M 1 M 2 e −√ λ n r V ( r ) = − G 4 r n = 0 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 36 / 61

  48. 1 0 ( G 4 M 1 M 2 ) -1 -2 M 1 M 2 � V ( r ≫ 1 ) = − G 4 V ( r ) r -3 V ( r ≪ 1 ) = − 15 G 4 M 1 M 2 -4 8 π 3 r 7 -5 0 . 6 0 . 8 1 . 0 1 . 2 1 . 4 r

  49. Pretty Pictures Fermat Quintic Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 The Laplace Operator 4 Pretty Pictures 5 Random Quintic Fermat Quintic Quintic Quotient Families Differential Forms Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 38 / 61

  50. Fermat Quintic: N p = 500 , 000 200 λ 150 µ 5 = 30 100 µ 4 = 60 µ 3 = 4 µ 2 = 20 50 µ 1 = 20 0 µ 0 = 1 0 1 2 3 k φ

  51. Pretty Pictures Fermat Quintic Symmetries of the Fermat Quintic The first massive eigenmode has degeneracy 20. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 40 / 61

  52. Pretty Pictures Fermat Quintic Symmetries of the Fermat Quintic The first massive eigenmode has degeneracy 20. The automorphisms group of the Fermat quintic Q F is �� � � � � � 4 Aut Q F = S 5 × Z 2 ⋉ Z 5 Lemma (Representation theory of Aut ( � Q F ) ) The 80 irreps of Aut ( � Q F ) are in dimension Dimension d 1 2 4 5 6 8 10 · · · Irreps in dim d 4 4 4 4 2 4 4 12 20 30 40 60 80 120 · · · 2 8 8 12 18 4 2 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 40 / 61

  53. Pretty Pictures Fermat Quintic Symmetries of the Fermat Quintic The first massive eigenmode has degeneracy 20. The automorphisms group of the Fermat quintic Q F is �� � � � � � 4 Aut Q F = S 5 × Z 2 ⋉ Z 5 Lemma (Representation theory of Aut ( � Q F ) ) The 80 irreps of Aut ( � Q F ) are in dimension Dimension d 1 2 4 5 6 8 10 · · · Irreps in dim d 4 4 4 4 2 4 4 12 20 30 40 60 80 120 · · · 2 8 8 12 18 4 2 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 40 / 61

  54. Pretty Pictures Fermat Quintic Donaldson’s Operator A (conjectural) alternative calculation of the spectrum of the scalar Laplacian. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 41 / 61

  55. Pretty Pictures Fermat Quintic Donaldson’s Operator A (conjectural) alternative calculation of the spectrum of the scalar Laplacian. Specific to the scalar Laplacian only. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 41 / 61

  56. Pretty Pictures Fermat Quintic Donaldson’s Operator A (conjectural) alternative calculation of the spectrum of the scalar Laplacian. Specific to the scalar Laplacian only. “Compares” balanced metrics at k and 2 k . � e ∆ ∼ Q α ¯ γδ = ( s α , s β )( s γ , s δ ) dVol β, ¯ � � � Recall: T ( h ) α ¯ β = ( s α , s β ) dVol Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 41 / 61

  57. Fermat Quintic: Donaldson’s Operator 140 120 100 80 λ n 60 40 Donaldson’s operator, k h = 1 20 Donaldson’s operator, k h = 2 Donaldson’s operator, k h = 3 0 0 20 40 60 80 100 120 140 n

  58. Fermat Quintic: scalar Laplacian 140 120 100 80 λ n 60 40 20 k φ = 3, k h = 3 (low precision metric) k φ = 3, k h = 8 (high precision metric) 0 0 20 40 60 80 100 120 140 n

  59. Donaldson vs. scalar Laplacian 140 120 100 80 λ n 60 Donaldson’s operator, k h = 1 40 Donaldson’s operator, k h = 2 Donaldson’s operator, k h = 3 20 k φ = 3, k h = 3 (low precision metric) k φ = 3, k h = 8 (high precision metric) 0 0 20 40 60 80 100 120 140 n

  60. Pretty Pictures Quintic Quotient Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 The Laplace Operator 4 Pretty Pictures 5 Random Quintic Fermat Quintic Quintic Quotient Families Differential Forms Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 45 / 61

  61. Pretty Pictures � Quintic Quotient ( Z 5 × Z 5 ) Fermat Quintic �� � Q F = � Q F Z 5 × Z 5 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 46 / 61

  62. Pretty Pictures � Quintic Quotient ( Z 5 × Z 5 ) Fermat Quintic �� � Q F = � Q F Z 5 × Z 5 � � � f t Simply use only invariant functions . Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 46 / 61

  63. Pretty Pictures � Quintic Quotient ( Z 5 × Z 5 ) Fermat Quintic �� � Q F = � Q F Z 5 × Z 5 � � � f t Simply use only invariant functions . Yields eigenvalues λ Z 5 × Z 5 . n Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 46 / 61

  64. Pretty Pictures � Quintic Quotient ( Z 5 × Z 5 ) Fermat Quintic �� � Q F = � Q F Z 5 × Z 5 � � � f t Simply use only invariant functions . Yields eigenvalues λ Z 5 × Z 5 . n Rescale volume to one: � 1 25 = Vol Q F ) − → 1 λ Z 5 × Z 5 → 25 − 1 / 3 λ Z 5 × Z 5 − = λ n n n Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 46 / 61

  65. � Fermat Quintic ( Z 5 × Z 5 ) : N p = 100 , 000 400 125 λ Z 5 × Z 5 300 100 λ n n 75 200 50 k φ = 0 k φ = 1 100 25 k φ = 2 0 0 0 20 40 60 80 100 n

  66. Pretty Pictures Families Introduction 1 Calabi-Yau Metrics 2 The Z 5 × Z 5 Quotient 3 The Laplace Operator 4 Pretty Pictures 5 Random Quintic Fermat Quintic Quintic Quotient Families Differential Forms Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 48 / 61

  67. � Pretty Pictures Families ( Z 5 × Z 5 ) Family #1 Quintic A family of Quintics � � � � � z 5 Q ψ = i − 5 ψ z i = 0 �� � Q ψ = � Q ψ Z 5 × Z 5 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 49 / 61

  68. � Pretty Pictures Families ( Z 5 × Z 5 ) Family #1 Quintic A family of Quintics � � � � � z 5 Q ψ = i − 5 ψ z i = 0 �� � Q ψ = � Q ψ Z 5 × Z 5 � Q 0 is the Fermat quintic. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 49 / 61

  69. � Pretty Pictures Families ( Z 5 × Z 5 ) Family #1 Quintic A family of Quintics � � � � � z 5 Q ψ = i − 5 ψ z i = 0 �� � Q ψ = � Q ψ Z 5 × Z 5 � Q 0 is the Fermat quintic. ψ = 1 is the conifold point. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 49 / 61

  70. � Pretty Pictures Families ( Z 5 × Z 5 ) Family #1 Quintic A family of Quintics � � � � � z 5 Q ψ = i − 5 ψ z i = 0 �� � Q ψ = � Q ψ Z 5 × Z 5 � Q 0 is the Fermat quintic. ψ = 1 is the conifold point. ψ → ∞ is the “large complex structure limit”. Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 49 / 61

  71. Pretty Pictures Families Conifold Point of the Quintic Conifold Point z 5 0 + z 5 1 + z 5 2 + z 5 3 + z 5 4 − 5 z 0 z 1 z 2 z 3 z 4 = 0 Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 50 / 61

  72. Pretty Pictures Families Conifold Point of the Quintic Conifold Point z 5 0 + z 5 1 + z 5 2 + z 5 3 + z 5 4 − 5 z 0 z 1 z 2 z 3 z 4 = 0 is singular at z C = [ 1 : 1 : 1 : 1 : 1 ] : Q 1 ( z C ) = 0 = ∂ Q 1 ( z C ) ∂ z i Volker Braun (UPenn) Metrics and the Laplace Operator Universität Hamburg 50 / 61

  73. � Quintic ( Z 5 × Z 5 ) Family #1 100 80 λ 60 40 � � ��� � 20 � z 5 Q ψ = i − 5 ψ z i = 0 Z 5 × Z 5 0 -1.5 -1 -0.5 0 0.5 1 1.5 ψ

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend