the standard atmosphere i
play

The standard atmosphere I Introduction to Aeronautical Engineering - PowerPoint PPT Presentation

The standard atmosphere I Introduction to Aeronautical Engineering Prof. dr. ir. Jacco Hoekstra M.T. Salam - CC - BY - SA Felix Baumgartner Joe Kittinger August 16 th , 1960 October 14 th , 2012 31 333 m 38 969 m R. de Pandora - CC - BY - SA


  1. The standard atmosphere I Introduction to Aeronautical Engineering Prof. dr. ir. Jacco Hoekstra M.T. Salam - CC - BY - SA

  2. Felix Baumgartner Joe Kittinger August 16 th , 1960 October 14 th , 2012 31 333 m 38 969 m R. de Pandora - CC - BY - SA Kansir - CC - BY

  3. Why a standard atmosphere? We need a reference atmosphere for: – Meaningful aircraft performance spec ification – Definition of (pressure) altitude and densities – Model atmosphere for simulation and analysis

  4. Why a standard atmosphere? We need a reference atmosphere for: – Meaningful aircraft performance spec ification – Definition of (pressure) altitude and densities – Model atmosphere for simulation and analysis

  5. What is a standard atmosphere? As function of altitude we need: – Pressure p [Pa] – Air density ρ [kg/m 3 ] – Temperature T [K] Physically correct, so it obeys:   – Equation of state: R  p RT 287.00 J kgK – Pressure increase due to gravity 101325 N/m 2

  6. Standard atmosphere is a model atmosphere International Standard Atmosphere Real atmosphere (ISA) NASA, muffinn - CC - BY

  7. The hydrostatic equation Describes pressure increase due to the gravity of air. p + Δ p Area A m ∙ g Δ h p

  8. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  9. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  10. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  11. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  12. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  13. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  14. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  15. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA pA m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  16. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  17. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g       Δ h A h g p A       p g h p dp = - ρ g dh

  18. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g       Δ h A h g p A       p g h p dp = - ρ g dh

  19. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  20. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  21. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  22. The hydrostatic equation Describes pressure increase due to the gravity of air.    F F p + Δ p down up Area     mg ( p p A ) pA A         A h g pA pA p A m ∙ g      Δ h h g p       p g h p dp = - ρ g dh

  23. How to define a standard atmosphere? As function of altitude: – Pressure p , air density ρ , temperature T Physically correct, so it obeys:   – Equation of state: p RT dp = - ρ g dh – Hydrostatic equation: 101325 N/m 2

  24. How to define a standard atmosphere? As function of altitude: – Pressure p , air density ρ , temperature T Physically correct, so it obeys:   – Equation of state: p RT dp = - ρ g dh – Hydrostatic equation: Define temperature as function of altitude 101325 N/m 2 Define start value for pressure

  25. thermosphere ISA mesopause Temperature profile mesosphere h [km] stratopause Sea level (h = 0 m):  p 101325 Pa stratosphere 0   o T 15 C 288.15 K 0 tropopause kg   1.225 troposphere 3 0 m T [K]

  26. ISA Temperature profile Level name Base geopotential Base Lapse rate Base atmospheric height [m] temperature [⁰C] [⁰C/km] pressure [Pa] Troposphere 0 15 -6.5 101,325 Tropopause 11,000 -56.5 0 22,632 Stratosphere 20,000 -56.5 +1.0 5474.9 Stratosphere 32,000 -44.5 +2.8 868.02 Stratopause 47,000 -2.5 0 110.91 Mesosphere 51,000 -2.5 -2.8 66.939 Mesosphere 71,000 -58.5 -2.0 3.9564 Mesopause 84,852 -86.2 - 0.3734

  27. ISA Temperature profile Level name Base geopotential Base Lapse rate Base atmospheric height [m] temperature [⁰C] [⁰C/km] pressure [Pa] Troposphere 0 15 -6.5 101,325 Tropopause 11,000 -56.5 0 22,632 Stratosphere 20,000 -56.5 +1.0 5474.9 Stratosphere 32,000 -44.5 +2.8 868.02 Stratopause 47,000 -2.5 0 110.91 Mesosphere 51,000 -2.5 -2.8 66.939 Mesosphere 71,000 -58.5 -2.0 3.9564 Mesopause 84,852 -86.2 - 0.3734

  28. How do we calculate pressure p and density ρ ?   p RT dp = - ρ g dh

  29. Felix Baumgartner Joe Kittinger August 16 th , 1960 October 14 th , 2012 31 333 m 38 969 m R. de Pandora - CC - BY - SA Kansir - CC - BY

  30. The standard atmosphere I Meteotek08 - CC - BY - SA

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend