toc chapter 4 the laplace transform
play

TOC Chapter 4. The Laplace Transform [part 1] 4.1 Preliminaries - PowerPoint PPT Presentation

TOC Chapter 4. The Laplace Transform [part 1] 4.1 Preliminaries 4.2 Laplace Transform 4.3 Basic Properties of the Laplace Transform 4.4 Inverse Laplace Transforms and Initial-Value Problems [part 2] 4.5 Piecewise Continuous Functions, Part


  1. TOC Chapter 4. The Laplace Transform [part 1] 4.1 Preliminaries 4.2 Laplace Transform 4.3 Basic Properties of the Laplace Transform 4.4 Inverse Laplace Transforms and Initial-Value Problems [part 2] 4.5 Piecewise Continuous Functions, Part I: Laplace Transforms 4.6 Piecewise Continuous Functions, Part II: Inverse Laplace Transforms 4.7 Initial-Value Problems with Piecewise Continuous Nonhomogeneous Terms

  2. Recall: A method for solving initial-value problems for linear differential equations with constant coefficients. Can be also used if RHS is only piecewise continuous (so not continuous). � ∞ e − sx f ( x ) dx F ( s ) = L [ f ( x )] := 0 Main properties: I. L is linear and one-to-one II. L [ f ′ ( x )] = s L [ f ( x )] − f (0) III. L [ x n f ( x )] = ( − 1) n d n F ds n ⇒ L [ e rx f ( x )] = F ( s − r ) IV. L [ f ( x )] = F ( s ) = V. (Translated Function) Let L [ f ( x )] := F ( s ) and c > 0 : L [ f ( x − c ) u ( x − c )] = e − cs F ( s ) . L − 1 [ e − cs F ( s )] = f ( x − c ) u ( x − c ) . where u is the Heaviside step function � 0 x < c u c ( x ) = u ( x − c ) = 1 x ≥ c 1

  3. f ( x ) F ( s ) = L [ f ( x )] c c s, s > 0 1 e αx s − α, s > α s cos βx s > 0 s 2 + β 2 , β sin βx s 2 + β 2 , s > 0 s − α e αx cos βx ( s − α ) 2 + β 2 , s > α β e αx sin βx ( s − α ) 2 + β 2 , s > α n ! x n , n = 1 , 2 , . . . s n +1 , s > 0 n ! x n e αx , n = 1 , 2 , . . . ( s − α ) n +1 , s > α s 2 − β 2 x cos βx ( s 2 + β 2 ) 2 , s > 0 2 βs x sin βx ( s 2 + β 2 ) 2 , s > 0 2

  4. Section 4.5. Laplace Transform: Discontinuous Functions Types of discontinuities: 1 Infinite: f ( x ) = ( x − 1) 2 3

  5.  2 x, 0 ≤ x < 3  Jump: f ( x ) = 4 , 3 ≤ x < ∞   x 2 − 4 x − 2 , x � = 2   Removable: f ( x ) = 1 , x = 2   4

  6. Def. Let the function f = f ( x ) be defined on an interval I and continuous except at a point c ∈ I . If x → c − f ( x ) lim and x → c + f ( x ) lim exist but x → c − f ( x ) � = lim x → c + f ( x ), lim then f is said to have a jump (or finite ) discontinuity at c . 5

  7. Def. A function f defined on an interval I is piecewise continuous on if it is continuous I on I except for at most a finite number of points c 1 , c 2 , . . . , c n of I at which it has jump discontinu- ities. 6

  8. Theorem: If the function f is piecewise continuous on [0 , ∞ ), and of exponential order λ , then the Laplace transform L [ f ( x )] exists for s > λ . 7

  9. Unit Step (Heaviside) Functions: Let c > 0. The function  0 x < c  u c ( x ) = u ( x − c ) = 1 x ≥ c  is called a unit step function . 8

  10. Laplace Transform of a Unit Step Function: � ∞ e − sx u ( x − c ) dx L [ u ( x − c )] = 0 L [ u ( x − c )] = e − cs 1 s > 0. s, 9

  11. Translation of a Function: if f is defined on [0 , ∞ ) and c > 0, then the function  0 , x < c   f ( x − c ) u ( x − c ) = f ( x − c ) u ( x − c ) , x ≥ c   is the translation of f to c . 10

  12. f ( x ) f ( x − c ) 11

  13. f ( x − c ) u ( x − c ) 12

  14. Translations: Express f ( x ) in terms of ( x − c ) EXAMPLES: 1. Express f ( x ) = 5 x + 3 in terms of ( x − 3) Express f ( x ) = x 2 − 3 x + 7 in terms of ( x − 2) 2. 13

  15. 3. Express f ( x ) = sin 2 x in terms of ( x − π/ 2) 4. Express f ( x ) = cos πx in terms of ( x − 3) 14

  16. Property V. Laplace Transform of a Translated Function: Suppose that L [ f ( x )] = F ( s ). Then, for any positive number c , L [ f ( x − c ) u ( x − c )] = e − cs F ( s ). 1. L − 1 [ e − cs F ( s )] = f ( x − c ) u ( x − c ). 2. 15

  17. Proof 16

  18. Examples: Given f ( x ), find F ( s ).  2 x, 0 ≤ x < 3  1. f ( x ) = 3 , 3 ≤ x < ∞  17

  19. Step 1. Re-write f in terms of u ( x − 3): f ( x ) = 2 x − 2 x u ( x − 3) + 3 u ( x − 3) 18

  20. Graphs: 2 x − 2 x u ( x − 3) 3 u ( x − 3) 19

  21. Step 2. Write the coefficients in terms of x − 3 f ( x ) = 2 x − 2( x − 3) u ( x − 3) − 3 u ( x − 3) 20

  22. Step 3. Determine L [ f ]: F ( s ) = 2 s 2 − 2 e − 3 s 1 s 2 − 3 e − 3 s 1 s 21

  23. x 2 ,  0 ≤ x < 2  2. f ( x ) = 3 x, x ≥ 2  Step 1. Re-write f in terms of u ( x − 2): f ( x ) = x 2 − x 2 u ( x − 2) + 3 x u ( x − 2) 22

  24. Step 2. Write the coefficients in terms of x − 2: f ( x ) = x 2 − ( x − 2) 2 u ( x − 2) − ( x − 2) u ( x − 2)+2 u ( x − 2) 23

  25. Step 3. Determine L [ f ]: f ( x ) = x 2 − ( x − 2) 2 u ( x − 2) − ( x − 2) u ( x − 2)+2 u ( x − 2) F ( s ) = 2 s 3 − e − 2 s 2 s 3 − e − 2 s 1 s 2 + 2 e − 2 s 1 s 24

  26.  x + 1 , 0 ≤ x < 3  3. f ( x ) = sin πx, x ≥ 3  Step 1. Re-write f in terms of u ( x − 3): f ( x ) = x + 1 − ( x + 1) u ( x − 3) + sin( πx ) u ( x − 3) 25

  27. Step 2. Write the coefficients in terms of x − 3: f ( x ) = x + 1 − 4 u ( x − 3) − ( x − 3) u ( x − 3) − sin[ π ( x − 3)] u ( x − 3) 26

  28. Step 3. Determine L [ f ]: F ( s ) = 1 s 2 + 1 s − 4 e − 3 s 1 s − e − 3 s 1 π s 2 − e − 3 s s 2 + π 2 27

  29.  1 0 ≤ x < π/ 2  4. f ( x ) = sin x π/ 2 ≤ x < π 2 cos x x ≥ π  Step 1. Re-write in terms of u ( x − π/ 2) and u ( x − π ) : f 28

  30. x − π Step 2. Write coefficients in terms of and x − π : 2 29

  31. (continued) f ( x ) = 1 − u ( x − π 2 ) + cos( x − π 2 ) u ( x − π 2 ) + sin( x − π ) u ( x − π ) − 2 cos( x − π ) u ( x − π ) 30

  32. Step 3. Determine L [ f ]: F ( s ) = 1 s − e − πs/ 2 1 s 1 s s + e − πs/ 2 s 2 + 1 + e − πs s 2 + 1 − 2 e − πs s 2 + 1 31

  33. Section 4.6. Inverse Transforms & Piecewise Continuous Functions: Recall Property V : Suppose that L [ f ( x )] = F ( s ). Then, for any positive number c , L [ f ( x − c ) u ( x − c )] = e − cs F ( s ). 1. L − 1 [ e − cs F ( s )] = f ( x − c ) u ( x − c ). 2. 32

  34. Examples: Given F ( s ), find f ( x ): F ( s ) = 3 s − 2 e − 2 s 1 1 s + e − 2 s 1. s − 2 33

  35. Answer: f ( x ) = 3 − 2 u ( x − 2) + e 2( x − 2) u ( x − 2)  3 , 0 ≤ x < 2  = 1 + e 2( x − 2) , x ≥ 2  34

  36. F ( s ) = 2 1 s + 4 e − 3 s 2. s ( s + 2) 35

  37. Answer: f ( x ) = 2 + 2 u ( x − 3) − 2 e − 2( x − 3) u ( x − 3)  2 , 0 ≤ x < 3   = 4 − 2 e 6 e − 2 x , x ≥ 3   36

  38. F ( s ) = 1 − e − πs 3. s ( s 2 + 4) 37

  39. Answer: f ( x ) = 1 4 − 1 4 cos 2 x − 1 4 u ( x − π )+ 1 4 cos(2[ x − π ]) u ( x − π ) = 1 4 − 1 4 cos 2 x − 1 4 u ( x − π ) + 1 4 cos 2 x u ( x − π )  4 − 1 1 4 cos 2 x, 0 ≤ x < π   = . 0 , x ≥ π   38

  40. 4. F ( s ) = 4 s + 2 s 2 +3 e − 2 s 1 s − 2 e − 2 s 1 s 2 − 5 e − 4 s 1 1 s 2 + e − 4 s s − 2 39

  41.  4 + 2 x, 0 ≤ x < 2      3 + 4 x, 2 ≤ x < 4 Answer: f ( x ) =   23 − x + e 2( x − 4) ,  x ≥ 4   40

  42. Section 4.7. Application to Initial-Value Prob- lems with piecewise continuous RHS Examples: 1. Use the Laplace transform method to solve the initial-value problem y ′ + 2 y = f ( x ) , y (0) = 1 .  x 0 ≤ x < 3  where f ( x ) = 1 x ≥ 3  41

  43. Laplace transform of the solution: e − 3 s e − 3 s 1 1 Y ( s ) = s 2 ( s + 2) − 2 s ( s + 2) + s 2 ( s + 2) − s + 2 The solution: − 1 4 + 1 2 x + 5  4 e − 2 x , 0 ≤ x < 3       y = 1 2 + 5 4 e − 2 x + 3  4 e − 2( x − 3) ,  x ≥ 3 .     42

  44. y 2 1 x 1 2 3 4 5 6 38

  45. 2. Use the Laplace transform method to solve the initial-value problem y ′′ + 2 y ′ + y = f ( x ) , y (0) = y ′ (0) = 0 .  1 0 ≤ x < 2  where f ( x ) = x + 1 x ≥ 2  Laplace transform of the solution: 2 e − 2 s e − 2 s 1 Y ( s ) = s ( s + 1) 2 + s ( s + 1) 2 + s 2 ( s + 1) 2 44

  46. The solution: y = 1 − ( x + 1) e − x ,  0 ≤ x < 2   x − 1 − ( x + 1) e − x − ( x − 2) e − ( x − 2) , x ≥ 2   45

  47. y 3 2 1 x 2 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend