chapter 7 the laplace transform part 1
play

Chapter 7: The Laplace Transform Part 1 Department of Electrical - PowerPoint PPT Presentation

Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary Chapter 7: The Laplace Transform Part 1 Department of Electrical Engineering National Taiwan University


  1. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary Chapter 7: The Laplace Transform – Part 1 Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 26, 2013 1 / 34 DE Lecture 10 王奕翔 王奕翔

  2. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary Solving an initial value problem associated with a linear differential equation: 2 Plug in the initial conditions to specify the undetermined coefficients. Question : Is there a faster way? 2 / 34 DE Lecture 10 1 General solution = complimentary solution + particular solution. 王奕翔

  3. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms 3 / 34 Question : How to solve the current? How to deal with discontinuity? Square voltage input: Periodic, Discontinuous . DE Lecture 10 For example: But in real applications, sometimes this is not true. with continuous, differentiable, or analytic coefficients. In Chapter 4, 5, and 6, we majorly deal with linear differential equations Summary E ( t ) L R E ( t ) t C 王奕翔

  4. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary In this lecture we introduce a powerful tool: Laplace Transform Invented by Pierre-Simon Laplace (1749 - 1827). 4 / 34 DE Lecture 10 王奕翔

  5. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms 5 / 34 DE Lecture 10 Summary Overview of the Method Find unknown y ( t ) Transformed DE Apply Laplace that satisfies DE becomes an algebraic transform and initial conditions equation in Y ( s ) Solution y ( t ) Apply inverse Laplace Solve transformed − 1 transform of original IVP equation for Y ( s ) 王奕翔

  6. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary 1 Laplace and Inverse Laplace Transform: Definitions and Basics 2 Solve Initial Value Problems using Laplace Transforms 3 Summary 6 / 34 DE Lecture 10 王奕翔

  7. Laplace and Inverse Laplace Transform: Definitions and Basics given that the improper integral converges. 7 / 34 Solve Initial Value Problems using Laplace Transforms Note : Use capital letters to denote transforms. DE Lecture 10 Summary Definition Definition of the Laplace Transform For a function f ( t ) defined for t ≥ 0 , its Laplace Transfrom is defined as ∫ ∞ e − st f ( t ) dt , F ( s ) := L { f ( t ) } := 0 L L L f ( t ) − → F ( s ) , g ( t ) − → G ( s ) , y ( t ) − → Y ( s ) , etc. Note : The domain of the Laplace transform F ( s ) (that is, where the improper integral converges) depends on the function f ( t ) 王奕翔

  8. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms 8 / 34 s s DE Lecture 10 Summary Examples of Laplace Transform Example Evaluate L { 1 } . ∫ ∞ ∫ T L { 1 } = e − st (1) dt = lim e − st dt T →∞ 0 0 [ − e − st ] T 1 − e − sT = lim = lim . T →∞ T →∞ 0 When does the above converge? s > 0 ! Hence, the domain of L { 1 } is s > 0 , and L { 1 } = 1 s . 王奕翔

  9. Laplace and Inverse Laplace Transform: Definitions and Basics td 9 / 34 s s Solve Initial Value Problems using Laplace Transforms s DE Lecture 10 Examples of Laplace Transform Summary Example Evaluate L { t } . ∫ ∞ ( − e − st ) ∫ T L { t } = te − st dt = lim T →∞ 0 0 [ − te − st ] T ∫ T 1 − Te − sT + 1 s e − st dt = lim = lim + s L { 1 } . T →∞ T →∞ 0 0 When does the above converge? s > 0 ! Hence, the domain of L { t } is s > 0 , and L { t } = 1 s 2 . 王奕翔

  10. Laplace and Inverse Laplace Transform: Definitions and Basics Solve Initial Value Problems using Laplace Transforms Summary Laplace Transform of t n Proof : One way is to prove it by induction. We will show another proof after discussing the Laplace transform of the derivative of a function. 10 / 34 DE Lecture 10 n ! L { t n } = s n +1 , n = 0 , 1 , 2 , . . . , s > 0 王奕翔

  11. Laplace and Inverse Laplace Transform: Definitions and Basics Proof : 11 / 34 Solve Initial Value Problems using Laplace Transforms DE Lecture 10 Laplace Transform of e at Summary 1 { e at } = L s − a , s > a ∫ ∞ ∫ T { e at } e − ( s − a ) t dt = e at e − st dt = lim L T →∞ 0 0 [ − e − ( s − a ) t 1 − e − ( s − a ) T ] T = lim = lim s − a s − a T →∞ T →∞ 0 When does the above converge? s − a > 0 ! 1 Hence, the domain of L { e at } is s > a , and L { e at } = s − a . 王奕翔

  12. Laplace and Inverse Laplace Transform: Definitions and Basics s 12 / 34 s s s Solve Initial Value Problems using Laplace Transforms s DE Lecture 10 Proof : Summary s k Laplace Transform of sin ( kt ) and cos ( kt ) L { sin ( kt ) } = s 2 + k 2 , L { cos ( kt ) } = s 2 + k 2 , s > 0 ∫ ∞ ∫ ∞ ( − e − st ) sin ( kt ) e − st dt = L { sin ( kt ) } = sin ( kt ) d 0 0 ∫ ∞ ] ∞ [ − sin ( kt ) e − st cos ( kt ) e − st dt = + k 0 0 ] ∞ [ − sin ( kt ) e − st = + k s L { cos ( kt ) } 0 ] ∞ [ − sin ( kt ) e − st When does the above converge? s > 0 ! = ⇒ 0 = 0 王奕翔

  13. Laplace and Inverse Laplace Transform: Definitions and Basics s 13 / 34 s . s s s Solve Initial Value Problems using Laplace Transforms s DE Lecture 10 Summary Proof : s k Laplace Transform of sin ( kt ) and cos ( kt ) L { sin ( kt ) } = s 2 + k 2 , L { cos ( kt ) } = s 2 + k 2 , s > 0 ∫ ∞ ∫ ∞ ( − e − st ) cos ( kt ) e − st dt = L { cos ( kt ) } = cos ( kt ) d 0 0 ∫ ∞ ] ∞ [ − cos ( kt ) e − st sin ( kt ) e − st dt = − k 0 0 ] ∞ [ − cos ( kt ) e − st = − k s L { sin ( kt ) } 0 ] ∞ [ − cos ( kt ) e − st 0 = 1 When does the above converge? s > 0 ! = ⇒ 王奕翔

  14. Laplace and Inverse Laplace Transform: Definitions and Basics Proof : 14 / 34 s k = Solve Initial Value Problems using Laplace Transforms Solve the above, we get the result: DE Lecture 10 s Summary k Laplace Transform of sin ( kt ) and cos ( kt ) L { sin ( kt ) } = s 2 + k 2 , L { cos ( kt ) } = s 2 + k 2 , s > 0 { L { sin ( kt ) } = k s L { cos ( kt ) } L { cos ( kt ) } = 1 s − k s L { sin ( kt ) } s 2 − k 2 L { sin ( kt ) } = k s L { cos ( kt ) } = k s 2 L { sin ( kt ) } ⇒ s 2 + k 2 L { sin ( kt ) } = k ⇒ L { sin ( kt ) } = s 2 + k 2 s 2 s 2 = L { cos ( kt ) } = s k L { sin ( kt ) } = s 2 + k 2 . 王奕翔

  15. Laplace and Inverse Laplace Transform: Definitions and Basics Proof : It can be proved by the linearity of integral. 15 / 34 s k Solve Initial Value Problems using Laplace Transforms . Hence Example DE Lecture 10 Theorem Laplace Transform is Linear Summary L L For any α, β , f ( t ) − → F ( s ) , g ( t ) − → G ( s ) , L { α f ( t ) + β g ( t ) } = α F ( s ) + β G ( s ) Evaluate L { sinh ( kt ) } and L { cosh ( kt ) } . e kt − e − kt ) e kt + e − kt ) A: sinh ( kt ) = 1 , cosh ( kt ) = 1 ( ( 2 2 → 1 ( 1 1 ) L sinh ( kt ) − s − k − = s 2 − k 2 , s > | k | 2 s + k → 1 ( 1 1 ) L cosh ( kt ) − s − k + = s 2 − k 2 , s > | k | . 2 s + k 王奕翔

  16. Laplace and Inverse Laplace Transform: Definitions and Basics e at 16 / 34 s k s Solve Initial Value Problems using Laplace Transforms k DE Lecture 10 Summary t n Laplace Transforms of Some Basic Functions f ( t ) F ( s ) Domain of F ( s ) n ! s > 0 s n +1 1 s > a s − a sin ( kt ) s > 0 s 2 + k 2 cos ( kt ) s > 0 s 2 + k 2 sinh ( kt ) s > | k | s 2 − k 2 cosh ( kt ) s > | k | s 2 − k 2 王奕翔

  17. Laplace and Inverse Laplace Transform: Definitions and Basics of exponential order , 17 / 34 lim Solve Initial Value Problems using Laplace Transforms Definition Theorem (Sufficient Conditions for the Existence of Laplace Transform) Existence of Laplace Transform Summary DE Lecture 10 If a function f ( t ) is piecewise continuous on [0 , ∞ ) , and then L { f ( t ) } exists for s > c for some constant c . A function f ( t ) is of exponential order if ∃ c ∈ R , M > 0 , τ > 0 such that | f ( t ) | ≤ Me ct , ∀ t > τ. Note : If f ( t ) is of exponential order, then ∃ c ∈ R such that for s > c , t →∞ f ( t ) e − st = 0 . 王奕翔

  18. Laplace and Inverse Laplace Transform: Definitions and Basics of exponential order , 18 / 34 exists. Solve Initial Value Problems using Laplace Transforms DE Lecture 10 Existence of Laplace Transform Summary Theorem (Sufficient Conditions for the Existence of Laplace Transform) If a function f ( t ) is piecewise continuous on [0 , ∞ ) , and then L { f ( t ) } exists for s > c for some constant c . Proof : For sufficiently large T > τ , we split the following integral: ∫ T ∫ τ ∫ T f ( t ) e − st dt f ( t ) e − st dt f ( t ) dt = + . 0 0 τ � �� � � �� � I 1 I 2 We only need to prove that I 2 converges as T → ∞ : ∫ T ∫ T ∫ T | f ( t ) e − st | dt = | f ( t ) | e − st dt ≤ Me ct e − st dt , | I 2 | ≤ τ τ τ { e ct } which converges as T → ∞ for s > c since L 王奕翔

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend