topic 1
play

Topic # 1 Laplace transform Reference textbook : Control Systems, - PowerPoint PPT Presentation

ME 779 Control Systems Topic # 1 Laplace transform Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1 Control Systems: Laplace transform Learning Objectives Laplace transform of typical time-domain


  1. ME 779 Control Systems Topic # 1 Laplace transform Reference textbook : Control Systems, Dhanesh N. Manik, Cengage Publishing, 2012 1

  2. Control Systems: Laplace transform Learning Objectives • Laplace transform of typical time-domain functions • Partial fraction expansion of Laplace transform functions • Final value theorem • Initial value theorem • System transfer function • General transfer function: poles and zeros, block diagram • Force response • Types of excitations • Impulse response function 2

  3. Control Systems: Laplace transform System dynamics is the study of characteristic behaviour of dynamic systems First-order systems Second-order systems } Differential equations Laplace transforms convert differential equations into algebraic equations System transfer function can be defined Transient response can be obtained They can be related to frequency response 3

  4. Control Systems: Laplace transform Basic definition    st x t e ( ) dt ℒ {x(t)}=X(s)= 0 4

  5. Control Systems: Laplace transform No. Function Time-domain Laplace domain x(t)= ℒ -1 {X(s)} X(s)= ℒ {x(t)} e - τ s δ(t - τ) 1 Delay δ(t) 2 Unit impulse 1 3 Unit step u(t) 1 s 4 Ramp t 1 s 2 e - α t 5 Exponential decay 1   s     e   6 Exponential t 1   approach s ( s ) 5

  6. Control Systems: Laplace transform  sin ω t 7 Sine   2 2 s cos ω t 8 Cosine s   2 2 s  sinh α t 9 Hyperbolic sine   2 2 s cosh α t 10 Hyperbolic cosine s   2 2 s  sin    11 Exponentially t e t     2 2 ( s ) decaying sine wave  cos     12 Exponentially s t e t     2 2 decaying cosine ( s ) wave 6

  7. Control Systems: Laplace transform Partial fraction expansion of Laplace transform functions Factors of the denominator • Unrepeated factors • Repeated factors • Unrepeated complex factors 7

  8. Control Systems: Laplace transform Unrepeated factors By equating both sides, determine A and B 8

  9. Control Systems: Laplace transform Example Expand the following equation of Laplace transform in terms of its partial fractions and obtain its time-domain response . 2 s  Y s ( )   ( s 1)( s 2) 2 s A B       ( s 1)( s 2) ( s 1) ( s 2) 2 4      t 2 t    y t ( ) 2 e 4 e ( ) Y s   ( 1) ( 2) s s 9

  10. Control Systems: Laplace transform Repeated factors   N s ( ) A B A B s ( a )        2 2 2 ( s a ) ( s a ) ( s a ) ( s a ) 10

  11. Control Systems: Laplace transform EXAMPLE 2 s Expand the following Laplace transform in terms of its  Y s ( ) partial fraction and obtain its time-domain response   2 ( s 1) ( s 2) 2 s A B C         2 2 ( s 1) ( s 2) ( s 1) ( s 1) ( s 2) } 2 4 4     Y s ( )    2 ( s 1) ( s 1) ( s 2)        t t 2 t ( ) 2 4 4 y t te e e 11

  12. Control Systems: Laplace transform Complex factors: they contain conjugate pairs in the denominator  N s ( ) As B        2 2 ( s a s )( a ) ( s ) 12

  13. Control Systems: Laplace transform EXAMPLE Express the following Laplace transform in terms of its partial fractions and obtain its time-domain response .  2 s 1  Y s ( )     ( s 1 j )( s 1 j ) 2 s 1   Y s ( )     2 2 ( 1) 1 ( 1) 1 s s     t t y t ( ) 2 e cos t e sin t 13

  14. Control Systems: Laplace transform Final-value theorem      lim sY s ( ) lim y t ( )  t  s 0 EXAMPLE Determine the final value of the time-domain function represented by          t t 2 t y t ( ) 2 te 4 e 4 e   2 s  Y s ( )   2 ( s 1) ( s 2) 14

  15. Control Systems: Laplace transform Initial-value theorem      lim sY s ( ) lim y t ( ) EXAMPLE  t 0  s Determine the initial value of the time-domain response of the following equation using the initial-value theorem  2 s 1      Y s ( )   t t y t ( ) 2 e cos t e sin t       ( s 1 j )( s 1 j )  s (2 s 1)  lim 2     ( s 1 j s )( 1 j )  s 15

  16. Control Systems: Laplace transform SYSTEM TRANSFER FUNCTION Block diagram ( ) Y s  G s ( ) X s ( ) System transfer function is the ratio of output to input in the Laplace domain 16

  17. Control Systems: Laplace transform SYSTEM TRANSFER FUNCTION General System Transfer Function m   ( s z )     i K ( s z )( s z ) ( s z )    1 2 m i 1 ( ) G s K    n  ( s p )( s p ) ( s p )   ( s p ) 1 2 n j  j 1 z , z ... z are called zeros 1 2 m K is a constant p , p ... p are called the poles 1 2 n Number of poles n will always be greater than the number of zeros m 17 (Laplace transform is a rational polynomial )

  18. Control Systems: Laplace transform EXAMPLE SYSTEM TRANSFER FUNCTION Obtain the pole-zero map of the following transfer function      ( 2 )( 2 4 )( 2 4 ) s s j s j  (1) G ( s )        ( s 3 )( s 4 )( s 5 )( s 1 j 5 )( s 1 j 5 ) Zeros Poles s=2 s=3 s=-2-j4 s=4 s=-2+j4 s=5 s=-1-j5 s=-1+j5 18

  19. Control Systems: Laplace transform SYSTEM TRANSFER FUNCTION EXAMPLE Zeros Poles Zeros Poles s=2 s=3 s=-2-j4 s=4 s=-2+j4 s=5 s=-1-j5 s=-1+j5 19

  20. Control Systems: Laplace transform Forced response     ( )( ) ( ) K s z s z s z   1 2 m C ( s ) G ( s ) R ( s ) R ( s )     ( s p )( s p ) ( s p ) 1 2 n R(s) input excitation 20

  21. Control Systems: Laplace transform Forced response TYPES OF EXCITATIONS 1. Impulse 2. Step 3. Ramp 4. Sinusoidal 21

  22. Control Systems: Laplace transform Forced response Impulse input    x ( t ) x ( t a ) i x i  Dirac delta function 22

  23. Control Systems: Laplace transform Forced response Laplace transform of an impulse input  Integral property of Dirac       ( ) ( t t t ) dt ( ) t delta function o o          st sa X ( s ) e x ( t a ) dt x e i i 0 23

  24. Control Systems: Laplace transform Forced response Step input  x     st i X s ( ) e x dt Laplace transform of step input i s 0 24

  25. Control Systems: Laplace transform Forced response Example The following transfer function is subjected to a unit step input. Determine the response  1 ( 1) s   R s ( ) G s ( ) p 1 =-4, z 1 =-1  ( s 4) s  ( s z ) A B     1 C s ( ) R s G s ( ) ( )   s s ( p ) s s p 1 1   z z 1 3       p t 4 t 1  1  c t ( ) 1 e e 1   p p 4 4 1 1 25

  26. Control Systems: Laplace transform Forced response Example Step response 1 3    4 t ( ) c t e 4 4 0.25 26

  27. Control Systems: Laplace transform Forced response  Ramp input 1     st ( ) X s e tdt 2 s 0 Laplace transform of the ramp input 45 0 27

  28. Control Systems: Laplace transform Forced response Sinusoidal input        st X s ( ) e sin t dt   2 2 s 0 28

  29. Control Systems: Laplace transform Forced response IMPULSE RESPONSE FUNCTION Time-domain response of a system subjected to unit impulse excitation h(t)= ℒ -1 {G(s))} It is the inverse Laplace transform of the system transfer function 29

  30. Control Systems: Laplace transform Forced response Convolution Integral Each infinitesimal strip of force defines an impulse response function ^   d  F F ( ) ^ ^ Response due to each    d  y F h ( t ) strip of the force t       y ( t ) F ( ) h ( t ) d Total response due to 0 entire force history 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend