computing the cut distance of two curves
play

Computing the cut distance of two curves Maike Buchin, Ruhr - PowerPoint PPT Presentation

Computing the cut distance of two curves Maike Buchin, Ruhr University Bochum Leonie Ryvkin , Ruhr University Bochum J er ome Urhausen, Utrecht University Leonie Ryvkin 16.03.2020 Introduction Visiting W urzburg Schloss Veitsh


  1. Computing the cut distance of two curves Maike Buchin, Ruhr University Bochum Leonie Ryvkin , Ruhr University Bochum J´ erˆ ome Urhausen, Utrecht University Leonie Ryvkin 16.03.2020

  2. Introduction Visiting W¨ urzburg Schloss Veitsh¨ ochheim Mainbr¨ ucke, Marienburg, Residenz, Dom... Leonie Ryvkin 16.03.2020

  3. Introduction Visiting W¨ urzburg Schloss Veitsh¨ ochheim Mainbr¨ ucke, Marienburg, Residenz, Dom... Leonie Ryvkin 16.03.2020

  4. Introduction Visiting W¨ urzburg Schloss Veitsh¨ ochheim Mainbr¨ ucke, Marienburg, Residenz, Dom... Leonie Ryvkin 16.03.2020

  5. Introduction The Fr´ echet distance δ F ( P , Q ) = inf τ,σ max t ∈ [0 , 1] � P ( τ ( t )) − Q ( σ ( t )) � τ, σ range over all orientation-preserving homeomorphisms Leonie Ryvkin 16.03.2020

  6. The cut distance δ cut ( k , P , Q ) = inf τ,σ max t ∈ [0 , 1] � P ( σ ( t )) − Q ( τ ( t )) � where τ, σ range over all piecewise continuous, surjective functions with k ′ < k jump discontinuities, each. Leonie Ryvkin 16.03.2020

  7. The cut distance δ cut ( k , P , Q ) = inf τ,σ max t ∈ [0 , 1] � P ( σ ( t )) − Q ( τ ( t )) � where τ, σ range over all piecewise continuous, surjective functions with k ′ < k jump discontinuities, each. P Q ε 1 ≥ δ H( P , Q ) ε 2 < δ cut(2 , P , Q ) ε 3 ≥ δ cut(2 , P , Q ) ε 4 ≥ δ wF( P , Q ) Leonie Ryvkin 16.03.2020

  8. The cut distance δ cut ( k , P , Q ) = inf τ,σ max t ∈ [0 , 1] � P ( σ ( t )) − Q ( τ ( t )) � where τ, σ range over all piecewise continuous, surjective functions with k ′ < k jump discontinuities, each. P Q ε 1 ≥ δ H( P , Q ) ε 2 < δ cut(2 , P , Q ) ε 3 ≥ δ cut(2 , P , Q ) ε 4 ≥ δ wF( P , Q ) F ε ( P , Q ) = { ( t 1 , t 2 ): � P ( t 1 ) − Q ( t 2 ) � ≤ ε } Leonie Ryvkin 16.03.2020

  9. The cut distance δ cut ( k , P , Q ) = inf τ,σ max t ∈ [0 , 1] � P ( σ ( t )) − Q ( τ ( t )) � where τ, σ range over all piecewise continuous, surjective functions with k ′ < k jump discontinuities, each. P Q ε 1 ≥ δ H( P , Q ) ε 2 < δ cut(2 , P , Q ) ε 3 ≥ δ cut(2 , P , Q ) ε 4 ≥ δ wF( P , Q ) Observe that δ H ≤ δ cut ≤ δ wF ≤ δ F . Leonie Ryvkin 16.03.2020

  10. Placing cut lines Q P ε Leonie Ryvkin 16.03.2020

  11. Placing cut lines ℓ Q P ε Leonie Ryvkin 16.03.2020

  12. Placing cut lines ℓ Q P h 1 ε Leonie Ryvkin 16.03.2020

  13. Placing cut lines ℓ Q h 2 P h 1 ε Leonie Ryvkin 16.03.2020

  14. Placing cut lines ℓ Q h 2 P h 1 ε Problem: In general, there are infinitely many possible placements for cut lines. Leonie Ryvkin 16.03.2020

  15. Placing cut lines ℓ Q P h 1 ε For k = 2, it is possible to move valid cut lines such that one of them coincides with an extremal point of a component’s boundary. Leonie Ryvkin 16.03.2020

  16. Algorithm for k = 2 Input: polygonal curves P , Q and ε > 0 P ε Q Leonie Ryvkin 16.03.2020

  17. Algorithm for k = 2 1. Compute FSD P ε Q Leonie Ryvkin 16.03.2020

  18. Algorithm for k = 2 1. Compute FSD G P ε Q Leonie Ryvkin 16.03.2020

  19. Algorithm for k = 2 1. Compute FSD 2. Identify candidates a i , b j P ε Q Leonie Ryvkin 16.03.2020

  20. Algorithm for k = 2 1. Compute FSD 2. Identify candidates a i , b j 3. Compute cut lines ℓ at extremal points P ε Q Leonie Ryvkin 16.03.2020

  21. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j P ε Q Leonie Ryvkin 16.03.2020

  22. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j P ε Q Leonie Ryvkin 16.03.2020

  23. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j P ε Q Leonie Ryvkin 16.03.2020

  24. Algorithm for k = 2 ℓ 1. Compute FSD h 2. Identify candidates a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j 5. Determine horizontal cut h Leonie Ryvkin 16.03.2020

  25. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates h a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j 5. Determine horizontal cut h Leonie Ryvkin 16.03.2020

  26. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates h a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j 5. Determine horizontal cut h ( 6. Repeat for h at extremal points) Leonie Ryvkin 16.03.2020

  27. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates h a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j 5. Determine horizontal cut h ( 6. Repeat for h at extremal points) ( 7. Repeat for opposite quadrants if necessary) Leonie Ryvkin 16.03.2020

  28. Algorithm for k = 2 ℓ 1. Compute FSD 2. Identify candidates h a i , b j 3. Compute cut lines ℓ at extremal points Identify a ℓ i , b ℓ 4. j 5. Determine horizontal cut h ( 6. Repeat for h at extremal points) ( 7. Repeat for opposite quadrants if necessary) 8. Return cut positions Leonie Ryvkin 16.03.2020

  29. Conclusion Overview on the cut distance Leonie Ryvkin 16.03.2020

  30. Conclusion Overview on the cut distance Deciding the cut distance is NP-hard in general Leonie Ryvkin 16.03.2020

  31. Conclusion Overview on the cut distance Deciding the cut distance is NP-hard in general Optimizing k is APX-hard Leonie Ryvkin 16.03.2020

  32. Conclusion Overview on the cut distance Deciding the cut distance is NP-hard in general Optimizing k is APX-hard O ( n 2 log n ) time algorithm for k = 2 Leonie Ryvkin 16.03.2020

  33. Conclusion Overview on the cut distance Deciding the cut distance is NP-hard in general Optimizing k is APX-hard O ( n 2 log n ) time algorithm for k = 2 Conjecture: already NP-hard for k = 3 Leonie Ryvkin 16.03.2020

  34. Conclusion Overview on the cut distance Deciding the cut distance is NP-hard in general Optimizing k is APX-hard O ( n 2 log n ) time algorithm for k = 2 Conjecture: already NP-hard for k = 3 Thank you! Leonie Ryvkin 16.03.2020

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend