the generalized geometry of calabi yau orientifolds with
play

The generalized geometry of Calabi-Yau orientifolds with fluxes - PowerPoint PPT Presentation

The generalized geometry of Calabi-Yau orientifolds with fluxes Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0507153] (to appear in Fortsch.Phys.) Nucl. Phys. B718, 2005 [hep-th/0412277] with J. Louis Nucl. Phys. B699,


  1. The generalized geometry of Calabi-Yau orientifolds with fluxes Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0507153] (to appear in Fortsch.Phys.) Nucl. Phys. B718, 2005 [hep-th/0412277] with J. Louis Nucl. Phys. B699, 2004 [hep-th/0403067] with J. Louis Madison, September 2005

  2. 2 Introduction and Motivation ➪ From String theory to D = 10 supergravity low String Theory − − − − − − − − → D = 10 Supergravity energies effective theory for massless string modes: “weak coupling” • concentrate on the two maximal supersymmetric theories in D = 10 Type IIA and IIB String Theory ↓ D = 10 Type IIA and IIB Supergravity with N = 2 phenomenology: Four-dimensional setups with gauge theory and N=1 supersymmetry

  3. 3 ➪ Four-dimensional setups: Compactification space-time background: M 1 , 3 × Y 6 • minimal supersymmetry in D = 4 : Y 6 is special manifold – Calabi-Yau ➪ Gauge theory: Type II string theories allow for D-branes • extended objects with gauge-theory on their world-volume • boundaries for open strings • supersymmetric D-branes break half of SUSY on their world-volume

  4. 4 ➪ Brane-world setups: necessity of orientifolds - minimal supersymmetry: Y 6 – compact Calabi-Yau manifold non-Abelian gauge groups: - space-time filling D-branes ⇒ consistency: orientifold planes ↓ Kaluza-Klein reduction Effectiv four-dimensional N = 1 Supergravity Theory Problem: many moduli fields – flat directions of the potential example: size of Y 6 v(x) corresponds to four-dimensional field

  5. 5 ➪ Our goal: 1) Determine effective N = 1 supergravity theory for these moduli fields in general Calabi-Yau orientifolds of type IIA and IIB string theory 2) Discuss geometry of N = 1 moduli space 3) Include mechanism to generate a potential: Background fluxes ⇒ moduli stabilization

  6. 6 Outline of the talk 1) Effective action of Type II Calabi-Yau orientifolds – Type IIB Calabi-Yau orientifolds – O3/O7 example – Type IIB Calabi-Yau orientifolds with several linear multiplets 2) Type IIA Calabi-Yau orientifolds – K¨ ahler potential and generalized geometry of moduli space 3) Fluxes in Type II orientifolds

  7. 7 1. Effective action of type II Calabi-Yau orientifolds ➪ d = 10 N = 2 massless (bosonic) spectrum: Type IIA Type IIB φ, ˆ ˆ G MN , ˆ φ, ˆ ˆ G MN , ˆ NS-NS: B 2 NS-NS: B 2 C 1 , ˆ ˆ C 0 , ˆ ˆ C 2 , ˆ R-R: C 3 R-R: C 4 ➪ compactification on compact Calabi-Yau Y 6 : Calabi-Yau manifold ≡ exists globally defined two-form J and (3 , 0) -form Ω s.t. dJ = 0 , d Ω = 0 Ω – holomorphic three-form: J – K¨ ahler form: δ Ω complex structure deformations δJ K¨ ahler structure deformations ≡ shape moduli z K ≡ size moduli v A

  8. 8 ➪ Defining the orientifold Acharya,Aganagic,Brunner,Hori,Vafa • mod out (gauge-fix) discreate symmetries of the string theory • focus on Type IIB 1) world sheet parity Ω p ‘orienti-’ – allow for non-orientable world-sheets: e.g. Klein bottle, M¨ obius strip 2) geometric symmetry σ of M 10 = M 4 × Y 6 , involution σ ( σ 2 = 1 ) ‘-fold’ – like in orbifold ⇒ orientifold planes – fix-points of σ • demand N = 1 supersymmetry σ is holomorphic and isometric involution: σ ∗ J = J σ ∗ Ω = − Ω σ ∗ Ω = +Ω orientifolds with O3/O7 planes orientifolds with O5/O9 planes O = ( − ) F L Ω p σ ∗ O = Ω p σ ∗ • supergravity: truncate spectrum such that: O ( Field ) = Field

  9. 9 ➪ Four-dimensional N = 1 Spectrum Type IIB O 3 /O 7 orientifolds • Kaluza-Klein reduction: expand fields in zero modes of Y 6 consistent with orientifold projection H ( p,q ) = H ( p,q ) ⊕ H ( p,q ) involution splits cohomologies + − B 2 = b a ω a , ω a ∈ H (1 , 1) ˆ ˆ ˆ φ = φ , C 0 = C 0 − c a ω a , ω α + V λ α λ , ω α ∈ H (2 , 2) , α λ ∈ H (3) ˆ ˆ C 2 = C 4 = ρ α ˜ ˜ + + h (2 , 1) z k z k shape moduli − h (1 , 1) ( v α , ρ α ) T α size moduli + chiral multiplets h (1 , 1) ( b a , c a ) G a − 1 ( φ, C 0 ) τ h (2 , 1) V λ vector multiplets + gravity multiplet 1 g µν

  10. 10 ➪ Four-dimensional N = 1 effective action • Kaluza-Klein reduction: determine effective action consistent with orientifold projection • N = 1 , D = 4 effective action in standard form: Wess,Bagger J − V ¯ J DM I D ¯ − 1 L = 2 R − K I ¯ M 2 Re f λκ ( F λ ) µν ( F κ ) µν − F κ ) µν , 2 Im f λκ ( F λ ) µν ( ˜ − 1 1 K I ¯ J ¯ e K � J D I WD ¯ W − 3 | W | 2 � + 1 2 (Re f ) − 1 λκ D λ D κ . V = M I ≡ ( z k , T α , G a , τ ) : all scalar fields, F λ = dV λ J = ∂ I ¯ ∂ J K ( M, ¯ K¨ ahler metric: K I ¯ M ) holomorphic superpotential: W ( M ) , D I W = ∂ I W + ( ∂ I K ) W holomorphic gauge kinetic function: f ( M ) ⇒ determine K (and f ) from orientifold effective action later: determine W, D α due to background flux

  11. 11 ➪ The K¨ ahler potential Type IIB orientifolds with O 3 /O 7 planes TWG,Louis chiral moduli fields � B 2 + iJ � C = τ + G a ω a + T α ˜ e − φ e − ˆ − i e − ˆ B 2 ∧ ˆ ω α Ω( z ) , Re • τ, G a , T α – complicated def of complex coordinates on N = 1 moduli space K¨ ahler potential � � Ω( z ) ∧ ¯ τ ) − 2 ln e − 3 2 φ K = − ln Ω(¯ z ) − ln ( τ − ¯ J ∧ J ∧ J , Y 6 Y 6 • general form of K¨ ahler potential in terms of topological data of Y 6 • of no-scale type: positive potential V ≥ 0 (if no superpotential for T α ) • last term in K: implicit function of real parts of τ, G a , T α ⇒ Im T α admits shift symmetry: Im T α → Im T α + c ⇒ K becomes explicit in the linear multiplet picture

  12. 12 ➪ Type II orientifolds with several linear multiplets – O3/O7 example replace chrial multiplets T α with linear multiplets ( L α , D α idea: 2 ) (Im T α possess shift symmetries) Dual picture 2 ) coupled to chiral multiplets N I = z k , τ, G a linear multiplets ( L α , D α ⇒ standard effective action for chiral/linear multiplet system Binetruy,Girardi,Grimm • kinetic terms and couplings encoded by kinetic potential ˜ K ( N, L ) = K ( N, L ) − 3 F ( N, L ) ahler potential K ( N, T ) and chiral coordinates T α + ¯ • K¨ T α are Legendre transform of ˜ K ( N, L ) and L α : T α + ¯ T α = ˜ K ( N, T ) = ˜ K − ˜ K L α L α K L α ,

  13. 13 O 3 /O 7 orientifold example � Ω( z ) ∧ ¯ τ ) + ln( K αβγ L α L β L γ ) K ( z, τ, G, L ) = − ln Ω(¯ z ) − ln( τ − ¯ τ ) − 1 K αab L α ( G − ¯ G ) a ( G − ¯ G ) b F ( τ, G, L ) = − i ( τ − ¯ The scalar potential potential in the presence of linear multiplets V = e K � K N A ¯ N B D N A W D N B W − (3 − L α K L α ) | W | 2 � ˜ L α K L α = 3 • since in O 3 /O 7 orientifolds ⇒ trivially V ≥ 0 ➪ similar analyis for O 5 /O 9 orientifolds possible

  14. 14 What about type IIA orientifolds? Just the mirror of both O3/O7 and O5/O9 setups?

  15. 15

  16. 16 2. Type IIA Calabi-Yau orientifolds TWG,Louis ➪ orientifold projection O = ( − 1) F L Ω p σ σ is anti-holomorphic, isometric involution of Y 6 σ ∗ Ω = e 2 iθ ¯ σ ∗ J = − J Ω ⇒ O 6 planes wrap special Lagrangian cycles in Y 6 calibrated with Re ( e − iθ Ω) ➪ chiral moduli fields h (1 , 1) J c = B 2 + iJ = t a ω a chiral multiplets − • coupling to the string world-sheet h (2 , 1) + 1 chiral multiplets Ω c = C 3 + i Re ( C Ω) = N k α k + T κ β κ • C ∝ e − φ − iθ ⇒ Ω c coupling to wrapping supersymmetric D 2 branes • gauge-couplings for space-time filling D 6 branes Blumenhagen, Braun, K¨ ors, L¨ ust

  17. 17 ➪ K¨ ahler potential � � K SK ( t ) + K Q ( N, T ) = − ln J ∧ J ∧ J − 2 ln C Ω ∧ C Ω Y 6 Y 6 • K Q calculated by using Legendre transformation (linear multiplet formalism) � C Ω = CZ K α K − C F K β K define: V = Y 6 C Ω ∧ C Ω , chiral picture: orientifolded Hitchin’s generalized geometry q k = Re ( CZ k ) K Q ( q k , q λ ) = − 2 ln V � � q , q λ = Re ( C F λ ) Legendre transformation dual picture: orientifolded N = 2 special geometry ❄ ❄ + 1 π λ = 1 q k = Re ( CZ k ) ˜ K Q ( q k , π λ ) = − 2 ln V V Im ( CZ λ ) � � � � q, π V F q, π ,

  18. 18 ➪ Generalized complex geometry (very brief) Hitchin,Gualtieri • differential geometry on T ≡ TY 6 ⊕ T ∗ Y 6 instead on TY 6 alone: ⇒ generalized metric on T ∼ = metric, B-field and dilaton on Y ⇒ generalized complex structure on T ∼ = complex/symplectic structure, B-field and dilaton on Y • TY 6 ⊕ T ∗ Y 6 has natural SO (6 , 6) structure ⇒ spinors of Spin (6 , 6) ? two Weyl representations S ev = Λ even T ∗ Y S odd = Λ odd T ∗ Y special complex spinors define generalized complex structure on T examples: e − φ e B 2 + iJ ∈ S ev , C Ω ∈ S odd We used the real parts of these forms in defining the N = 1 K¨ ahler coordinates on the truncated quaternionic space M Q ! • Hitchin defines a functional V ( ρ ) on the real parts of these forms ahler potentials on M Q ⇒ evaluated on light modes of the theory: K¨

  19. 19 The spinors e − φ e − B 2 + iJ and C Ω are the special cases corresponding to Calabi-Yau orientifolds. The mathematical framework is much more powerful It can incorporate orientifolds of non-Calabi Yau spaces. ’Generalized complex orientifolds’

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend