  # Gaugino masses from string loops problem: m 1 / 2 = 0 to lowest - PDF document

## I. Antoniadis CERN Gaugino masses from string loops problem: m 1 / 2 = 0 to lowest order generated by string loop corrections Framework: type I string theory effective field theory: may be still tree-level closed string gravity

1. I. Antoniadis CERN Gaugino masses from string loops

2. problem: m 1 / 2 = 0 to lowest order ⇒ generated by string loop corrections Framework: type I string theory • effective field theory: may be still tree-level closed string gravity exchange ⇒ SUGRA tree-level λ ⇒ λ ր ↑ տ ↑ SM gravity hidden F-term of sector closed string state

3. Gaugino masses: protected by R-symmetry but broken in 4d SUGRA by the gravitino mass Two possible ways for generating m 1 / 2 : (1) via gravity (brane susy) ⇒ generate m 1 / 2 from m 3 / 2 one gravitational loop: 1 handle + 1 boundary m 3 ⇒ m 1 / 2 ∼ g 2 3 / 2 I.A.-Taylor ’04 s M 2 s (2) keep gravity subdominant ⇒ generate m 1 / 2 from brane α ′ -corrections two gauge loops: 3 boundaries m 4 ⇒ m 1 / 2 ∼ g 2 0 I.A.-Narain-Taylor ’05 s M 3 s

4. gauginos: open strings ⇒ at least one boundary (brane) h ≥ 1 N = 2 superconformal charge: 3/2 units for each (chiral) gaugino ± 1 unit for each 2d supercurrent insertion T F ⇒ at least 3 T F insertions lowest order (effective genus): g + h/ 2 = 3 / 2 independently of the source of SUSY breaking!

5. Oriented case (1) g = 1 h = 1 from mirror involution of g = 2 b 1 b b 2 ← − c c a 1 a 2 a a 1 ↔ a 2 b 1 ↔ − b 2 (1) g = 0 h = 3 from mirror involution of g = 2 a3 b 1 c b 2 ← − a 2 a 3 a 1 a2 a1 a i ↔ a i b i ↔ − b i

6. Topological partition function F g տ genus g computes N = 2 SUSY F-terms AGNT, BCOV ’93 � d 4 θ W 2 g F g R 2 T 2 g − 2 F g → N =2 F g : moduli dependent function Weyl superfield: W N =2 = T + θ 2 R + · · · T : graviphoton field strength R : Riemann tensor

7. � F 2 R 2 T 2 d 4 θ W 4 F 2 → N =2 • graviphoton vertex T = (gaugino) 2 • graviton vertex = (gauge field) 2 b 1 b 2 (1) ⇒ λλ R c տ a 1 a 2 T 2 R R or SUSY breaking ւ b 1 c b λλ F 2 2 (2) ⇒ a 2 a 3 a 1 ր ↑ R 2 T 2 SUSY breaking: R → � gravity auxiliary field � F → � D �

8. m 1 / 2 : ր m 3 / 2 տ 1 /M p 1 /M p Λ 2  if quadr . divergent UV    m 3 / 2   ∼ × M 2 p  m 2  if convergent   3 / 2  ւ λ b m 3 3 / 2 ∼ g 2 g s ∼ g 2 s M 2 c տ s a λ but it vanishes for orbifolds I.A.-Taylor ’04

9. - anomaly mediation: g 2 ∼ g s m 1 / 2 ∼ g 2 m 3 / 2 • power of g s does not match one loop correction always vanishes by N = 2 superconformal charge • two loops behave ∼ m 3 3 / 2 - hierarchy between gaugino and scalar masses however numerics not very good unless every loop factor ∼ 10 − 2

10. Sherk-Schwarz along an interval ⊥ branes ⇒ m 3 / 2 ∼ 1 /R M 3 gravity strength ⇒ R − 1 = p ∼ 10 13 GeV 2 s α 2 M 2 G for M s ∼ M GUT ∼ 10 16 GeV m 3 • m 1 / 2 ∼ g 2 3 / 2 ∼ 1 TeV s M 2 s if every loop-factor ∼ 10 − 2 m 2 M s ∼ 10 8 GeV • m 0 > 3 / 2 ∼ g s scalar masses induced at one loop ⇒ split supersymmetry framework heavy scalars, light fermions Arkani Hamed-Dimopoulos, Giudice-Romanino ’04

11. Break SUGRA keeping R-symmetry I.A.-Dimopoulos ’04 SS breaking on S 1 / Z 2 ⊥ brane ⇒ 3 / 2-KK states L R L R —— —— —— - - - - - - —— —— —— —— - - - - - - → —— − Q + Q —— n = 0 —— - - - • generic shift Q ⇒ Majorana masses, / R Q/R < E < 1 /R ⇒ 4d SUGRA E >> 1 /R ⇒ 5d SUGRA • Q = 1 / 2 ⇒ pairing | n + Q � L with | n + 1 − Q � R ⇒ Dirac masses, unbroken R-symmetry no intermediate regime ⇒ no 4d SUGRA description

12. SUSY breaking by internal magnetic fields or equivalently branes at angles Effective QFT description: D-breaking magnetic field H ∼ � D � -term of U (1) ր � D � ∼ m 2 U ( N ) brane stack 0 R-symmetry broken by string corrections ⇒ higher-dim effective operators: I.A.-Narain-Taylor ’05 � d 2 θ W 2 Tr W 2 �W� = θ � D � F (0 , 3) ⇒ m 1 / 2 ∼ ǫ 2 m 4 0 ǫ 2 : 2-loop factor M 3 s ∼ TeV for m 0 ∼ 10 13 − 10 14 GeV

13. World-sheet with 3 boundaries (2 loops) a3 ← I : intermediate brane � I a2 ր a1 տ W 2 W 2 W 2 T-duality ⇒ I W 2 � = 0 : I -brane away from the intersection of the other two • as gauge mediation with string scale gaugino masses

14. • Higgsino mass H 2 ⇒ µ ∼ ǫ m 4 � d 2 θ W 2 ¯ D 2 ¯ < H 1 ¯ 0 ∼ m 1 / 2 M 3 s ր ψ 1 ψ 2 • Simple toroidal models gauge multiplets: N = 4 (or N = 2) SUSY ⇒ Dirac gaugino masses without / R d 2 θ W Tr WA ⇒ m D ∼ ǫ m 2 � 0 1-loop factor M s N = 2 vector = N = 1 vector W + chiral A they can still be consistent with unification in inermediate energy scales ∼ 10 7 − 10 13 GeV I.A.-Benakli-Delgado-Quir´ os-Tuckmantel ’05

More recommend