gaugino masses from string loops problem m 1 2 0 to
play

Gaugino masses from string loops problem: m 1 / 2 = 0 to lowest - PDF document

I. Antoniadis CERN Gaugino masses from string loops problem: m 1 / 2 = 0 to lowest order generated by string loop corrections Framework: type I string theory effective field theory: may be still tree-level closed string gravity


  1. I. Antoniadis CERN Gaugino masses from string loops

  2. problem: m 1 / 2 = 0 to lowest order ⇒ generated by string loop corrections Framework: type I string theory • effective field theory: may be still tree-level closed string gravity exchange ⇒ SUGRA tree-level λ ⇒ λ ր ↑ տ ↑ SM gravity hidden F-term of sector closed string state

  3. Gaugino masses: protected by R-symmetry but broken in 4d SUGRA by the gravitino mass Two possible ways for generating m 1 / 2 : (1) via gravity (brane susy) ⇒ generate m 1 / 2 from m 3 / 2 one gravitational loop: 1 handle + 1 boundary m 3 ⇒ m 1 / 2 ∼ g 2 3 / 2 I.A.-Taylor ’04 s M 2 s (2) keep gravity subdominant ⇒ generate m 1 / 2 from brane α ′ -corrections two gauge loops: 3 boundaries m 4 ⇒ m 1 / 2 ∼ g 2 0 I.A.-Narain-Taylor ’05 s M 3 s

  4. gauginos: open strings ⇒ at least one boundary (brane) h ≥ 1 N = 2 superconformal charge: 3/2 units for each (chiral) gaugino ± 1 unit for each 2d supercurrent insertion T F ⇒ at least 3 T F insertions lowest order (effective genus): g + h/ 2 = 3 / 2 independently of the source of SUSY breaking!

  5. Oriented case (1) g = 1 h = 1 from mirror involution of g = 2 b 1 b b 2 ← − c c a 1 a 2 a a 1 ↔ a 2 b 1 ↔ − b 2 (1) g = 0 h = 3 from mirror involution of g = 2 a3 b 1 c b 2 ← − a 2 a 3 a 1 a2 a1 a i ↔ a i b i ↔ − b i

  6. Topological partition function F g տ genus g computes N = 2 SUSY F-terms AGNT, BCOV ’93 � d 4 θ W 2 g F g R 2 T 2 g − 2 F g → N =2 F g : moduli dependent function Weyl superfield: W N =2 = T + θ 2 R + · · · T : graviphoton field strength R : Riemann tensor

  7. � F 2 R 2 T 2 d 4 θ W 4 F 2 → N =2 • graviphoton vertex T = (gaugino) 2 • graviton vertex = (gauge field) 2 b 1 b 2 (1) ⇒ λλ R c տ a 1 a 2 T 2 R R or SUSY breaking ւ b 1 c b λλ F 2 2 (2) ⇒ a 2 a 3 a 1 ր ↑ R 2 T 2 SUSY breaking: R → � gravity auxiliary field � F → � D �

  8. m 1 / 2 : ր m 3 / 2 տ 1 /M p 1 /M p Λ 2  if quadr . divergent UV    m 3 / 2   ∼ × M 2 p  m 2  if convergent   3 / 2  ւ λ b m 3 3 / 2 ∼ g 2 g s ∼ g 2 s M 2 c տ s a λ but it vanishes for orbifolds I.A.-Taylor ’04

  9. - anomaly mediation: g 2 ∼ g s m 1 / 2 ∼ g 2 m 3 / 2 • power of g s does not match one loop correction always vanishes by N = 2 superconformal charge • two loops behave ∼ m 3 3 / 2 - hierarchy between gaugino and scalar masses however numerics not very good unless every loop factor ∼ 10 − 2

  10. Sherk-Schwarz along an interval ⊥ branes ⇒ m 3 / 2 ∼ 1 /R M 3 gravity strength ⇒ R − 1 = p ∼ 10 13 GeV 2 s α 2 M 2 G for M s ∼ M GUT ∼ 10 16 GeV m 3 • m 1 / 2 ∼ g 2 3 / 2 ∼ 1 TeV s M 2 s if every loop-factor ∼ 10 − 2 m 2 M s ∼ 10 8 GeV • m 0 > 3 / 2 ∼ g s scalar masses induced at one loop ⇒ split supersymmetry framework heavy scalars, light fermions Arkani Hamed-Dimopoulos, Giudice-Romanino ’04

  11. Break SUGRA keeping R-symmetry I.A.-Dimopoulos ’04 SS breaking on S 1 / Z 2 ⊥ brane ⇒ 3 / 2-KK states L R L R —— —— —— - - - - - - —— —— —— —— - - - - - - → —— − Q + Q —— n = 0 —— - - - • generic shift Q ⇒ Majorana masses, / R Q/R < E < 1 /R ⇒ 4d SUGRA E >> 1 /R ⇒ 5d SUGRA • Q = 1 / 2 ⇒ pairing | n + Q � L with | n + 1 − Q � R ⇒ Dirac masses, unbroken R-symmetry no intermediate regime ⇒ no 4d SUGRA description

  12. SUSY breaking by internal magnetic fields or equivalently branes at angles Effective QFT description: D-breaking magnetic field H ∼ � D � -term of U (1) ր � D � ∼ m 2 U ( N ) brane stack 0 R-symmetry broken by string corrections ⇒ higher-dim effective operators: I.A.-Narain-Taylor ’05 � d 2 θ W 2 Tr W 2 �W� = θ � D � F (0 , 3) ⇒ m 1 / 2 ∼ ǫ 2 m 4 0 ǫ 2 : 2-loop factor M 3 s ∼ TeV for m 0 ∼ 10 13 − 10 14 GeV

  13. World-sheet with 3 boundaries (2 loops) a3 ← I : intermediate brane � I a2 ր a1 տ W 2 W 2 W 2 T-duality ⇒ I W 2 � = 0 : I -brane away from the intersection of the other two • as gauge mediation with string scale gaugino masses

  14. • Higgsino mass H 2 ⇒ µ ∼ ǫ m 4 � d 2 θ W 2 ¯ D 2 ¯ < H 1 ¯ 0 ∼ m 1 / 2 M 3 s ր ψ 1 ψ 2 • Simple toroidal models gauge multiplets: N = 4 (or N = 2) SUSY ⇒ Dirac gaugino masses without / R d 2 θ W Tr WA ⇒ m D ∼ ǫ m 2 � 0 1-loop factor M s N = 2 vector = N = 1 vector W + chiral A they can still be consistent with unification in inermediate energy scales ∼ 10 7 − 10 13 GeV I.A.-Benakli-Delgado-Quir´ os-Tuckmantel ’05

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend