an element based reformulation of restriction monads
play

An Element-based Reformulation of Restriction Monads Category Theory - PowerPoint PPT Presentation

Restriction Monads Algebras for Restriction Monads An Element-based Reformulation of Restriction Monads Category Theory 2017 at University of British Columbia Darien DeWolf Dalhousie University July 20, 2017 . . . . . . . . . . . .


  1. Restriction Monads Algebras for Restriction Monads An Element-based Reformulation of Restriction Monads Category Theory 2017 at University of British Columbia Darien DeWolf Dalhousie University July 20, 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  2. Restriction Monads Algebras for Restriction Monads Restriction Categories A restriction structure on a category X is an assignment of an arrow f : A → A to each arrow f : A → B in X satisfying the following four conditions: (R.1) For all maps f , f f = f . (R.2) For all maps f : A → B and g : A → B ′ , f g = g f . (R.3) For all maps f : A → B and g : A → B ′ , g f = g f . (R.4) For all maps f : B → A and g : A → B ′ , g f = f gf . A category equipped with a restriction structure is called a restriction category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  3. Restriction Monads Algebras for Restriction Monads Restriction Monads: Definition Version 1 In a bicategory with involution, a restriction monad consists of a 0-cell x , 1-cells T , D , E : x → x and 2-cells η : 1 T ⇒ T , µ : T 2 ⇒ T , [ µ | ∗ DE ] : DE ⇒ D , ρ : D ⇒ E (epic), ι : E ⇒ T (monic), ∆ : T ⇒ TD , τ : D 2 ⇒ D 2 and ψ : DT ⇒ TD satisfying conditions corresponding to (R.1) through (R.4) plus the usual monad laws plus D ∗ D = DD ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  4. Restriction Monads Algebras for Restriction Monads Problem with the first approach Ordinary monads in Span ( Set ) are in one-to-one correspondence with small categories. Let X be a restriction category. We can easily construct a restriction monad R ( X ) in Span ( Set ) with T , D , E behaving as desired, but we can’t canonically go backwards: the D is not uniquely determined by the choice of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  5. Restriction Monads Algebras for Restriction Monads Problem with the first approach Ordinary monads in Span ( Set ) are in one-to-one correspondence with small categories. Let X be a restriction category. We can easily construct a restriction monad R ( X ) in Span ( Set ) with T , D , E behaving as desired, but we can’t canonically go backwards: the D is not uniquely determined by the choice of T . One Solution: Define restriction monads so that D and E naturally become "subobjects" of T by design. We can do this easily if we think of T as having elements and defining our operations on certain subsets of T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  6. � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Suppose that X is a small restriction category. For each element A of X 0 , we can define a span ⃗ A : {∗} � X 0 by {∗} ▲ id A � qqqqqq ▲ ▲ ▲ ▲ ▲ {∗} X 0 Peek-ahead: We will call such a span {∗} -elemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  7. � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Suppose that X is a small restriction category. Its corresponding monad in Span ( Set ) is of the form X 1 s ▼ t � qqqqqq ▼ ▼ ▼ ▼ ▼ X 0 X 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  8. � � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Suppose that X is a small restriction category. Its corresponding monad in Span ( Set ) is of the form X 1 s ▼ t � qqqqqq ▼ ▼ ▼ ▼ ▼ X 0 X 0 Composing ⃗ A with T , then is of the form {∗} A × s X 1 ◗ t π 1 id � ❧❧❧❧❧❧❧ ◗ ◗ ◗ ◗ ◗ ◗ {∗} X 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  9. � � � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . T ⃗ A contains as data all arrows of X with source A . Given another object B ∈ X 0 , a span morphism f : ⃗ � T ⃗ A , of the form B {∗} ◗ � ❧❧❧❧❧❧❧❧❧ ◗ id B ◗ ◗ ◗ ◗ ◗ ◗ ◗ {∗} X 0 f � ❘❘❘❘❘❘❘ ♠ ♠ ♠ ♠ ♠ ♠ t π 2 π 1 ♠ {∗} A × s X 1 is therefore equivalent to the choice of an arrow f in X whose source is A and whose target is B . Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) ← → X ( A , B ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  10. Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Such an identification allows us to define the restriction operator ρ as a family of set functions ρ A , B : Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) → Span ( Set )( {∗} , X 0 )( ⃗ A , T ⃗ A ) of arrows f : A → B to arrows ρ ( f ) : A → A . The conditions that this family of assignments satisfies will be given in a definition soon. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  11. Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Identifying Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) with X ( A , B ) , we must therefore consider how to “compose” elements of the set Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) × Span ( Set )( {∗} , X 0 )( ⃗ C , T ⃗ B ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  12. Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Identifying Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) with X ( A , B ) , we must therefore consider how to “compose” elements of the set Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) × Span ( Set )( {∗} , X 0 )( ⃗ C , T ⃗ B ) . Note that such an element is of the form ⃗ � T ⃗ C B ⃗ � T ⃗ B A , For all A , B , C ∈ X 0 , define a composition map � µ to be a Kleisli-flavoured composite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  13. � � � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ A ) × Span ( Set )( {∗} , X 0 )( ⃗ C , T ⃗ B ) Span ( Set )( {∗} , X 0 )( T , T ) × id Span ( Set )( {∗} , X 0 )( T ⃗ B , TT ⃗ A ) × Span ( Set )( {∗} , X 0 )( ⃗ C , T ⃗ B ) µ is the composite: � ◦ Span ( Set )( {∗} , X 0 ) TT ⃗ A , T ⃗ B ,⃗ C Span ( Set )( {∗} , X 0 )( ⃗ C , TT ⃗ A ) Span ( Set )( {∗} , X 0 )( ⃗ C ,µ ) Span ( Set )( {∗} , X 0 )( ⃗ C , T ⃗ A ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  14. � � � Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . Defining � µ first requires an interpretation of the set Span ( Set )( {∗} , X 0 )( T ⃗ B , TT ⃗ A ) . Its elements are span morphisms of the form {∗} B × s X 1 ❯ t π 2 � ✐✐✐✐✐✐✐✐✐✐ ❯ π 1 ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ ❯ {∗} X 0 f � ❯❯❯❯❯❯❯❯❯❯ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ ✐ t π 2 π 2 π 1 ✐ ✐ {∗} A × s π 1 ( X 1 t × s X 1 ) These are assignments of arrows f with source B to composable pairs of arrows with source A and target tf : → ( A → C ′ → C ) . ( B → C ) �− . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

  15. Restriction Monads Algebras for Restriction Monads Example: The elements of a monad in Span ( Set ) . The morphism Span ( Set )( {∗} , X 0 )( T , T ) Span ( Set )( {∗} , X 0 )( ⃗ B , T ⃗ → Span ( Set )( {∗} , X 0 )( T ⃗ B , TT ⃗ A ) − A ) is defined by [ ] [ ] f : A → B �− → ( f , − ) : ( g : B → C ) �− → ( f : A → B , g : B → C ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Darien DeWolf An Element-based Reformulation of Restriction Monads

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend