perturbative approach to a non spherically distorted
play

Perturbative Approach to a Non-spherically distorted Gravitational - PowerPoint PPT Presentation

Perturbative Approach to a Non-spherically distorted Gravitational Lens Masumi KASAI kasai@phys.hirosaki-u.ac.jp Hirosaki University 2011.6.6@former Research Inst. Theoretical Physics, a.k.a. Rironken


  1. Perturbative Approach to a Non-spherically distorted Gravitational Lens Masumi KASAI kasai@phys.hirosaki-u.ac.jp Hirosaki University 2011.6.6@former Research Inst. Theoretical Physics, a.k.a. “ Rironken ”

  2. 非球対称重力レンズへの 摂動的アプローチ 葛西 真寿 弘前大学 大学院理工学研究科 kasai@phys.hirosaki-u.ac.jp 2011.6.6@ 旧理論物理学研究所 a.k.a. “ 理論研 ”

  3. Compact lens model a point mass α i = 4 GM | b | 2 b i Some generalizations... • rotational e ff ect a ... ( ( GM ) 2 ) • higher order e ff ects O ... • binary lens, etc...

  4. Compact lens model a point mass α i = 4 GM | b | 2 b i Some generalizations... • rotational e ff ect a ... ( ( GM ) 2 ) • higher order e ff ects O ... • binary lens, etc...

  5. Compact lens model a point mass α i = 4 GM | b | 2 b i Some generalizations... • rotational e ff ect a ... ( ( GM ) 2 ) • higher order e ff ects O ... • binary lens, etc...

  6. Compact lens model a point mass α i = 4 GM | b | 2 b i Some generalizations... • rotational e ff ect a ... ( ( GM ) 2 ) • higher order e ff ects O ... • binary lens, etc...

  7. E ff ect of non-spherical distortion bending angle b i b j b k b i b j ( ) α i = 4 GM | b | 2 + 8 G 2 Q jk , − Q i j c 2 c 2 | b | 6 | b | 4 mass multipole moments ∫ ρ d 3 x M = ( ) ∫ X i X j − 1 2 δ i j | X | 2 d 3 X ρ Q ij = trace-free quadrupole moment on the lens plane

  8. E ff ect of non-spherical distortion bending angle b i b j b k b i b j ( ) α i = 4 GM | b | 2 + 8 G 2 Q jk , − Q i j c 2 c 2 | b | 6 | b | 4 mass multipole moments ∫ ρ d 3 x M = ( ) ∫ X i X j − 1 2 δ i j | X | 2 d 3 X ρ Q ij = trace-free quadrupole moment on the lens plane

  9. E ff ect of non-spherical distortion bending angle b i b j b k b i b j ( ) α i = 4 GM | b | 2 + 8 G 2 Q jk , − Q i j c 2 c 2 | b | 6 | b | 4 mass multipole moments ∫ ρ d 3 x M = ( ) ∫ X i X j − 1 2 δ i j | X | 2 d 3 X ρ Q ij = trace-free quadrupole moment on the lens plane

  10. Normalization & diagonalization ( e ) 0 Q ij ⇒ 0 − e Lens Equation x 2 + y 2 − e ( x 2 − 3 y 2 ) x x β x = x − ( x 2 + y 2 ) 3 x 2 + y 2 − e (3 x 2 − y 2 ) y y β y = y − ( x 2 + y 2 ) 3 β = ( β x , β y ): source position θ = ( x , y ): image position

  11. Lens Equation x 2 + y 2 − e ( x 2 − 3 y 2 ) x x β x = x − ( x 2 + y 2 ) 3 x 2 + y 2 − e (3 x 2 − y 2 ) y y β y = y − ( x 2 + y 2 ) 3 Higher order simultaneous polynomials How to solve? cf. Asada (2005): exact, analytic approach polar coordinates = ⇒ 10th order eq. 4 or 6 real solutions (on-axis case only)

  12. Lens Equation x 2 + y 2 − e ( x 2 − 3 y 2 ) x x β x = x − ( x 2 + y 2 ) 3 x 2 + y 2 − e (3 x 2 − y 2 ) y y β y = y − ( x 2 + y 2 ) 3 Higher order simultaneous polynomials How to solve? cf. Asada (2005): exact, analytic approach polar coordinates = ⇒ 10th order eq. 4 or 6 real solutions (on-axis case only)

  13. order of magnitude e ∼ 10 − 5 ( M ⊙ ) 3 ( 10 7 km ) 2 ( ) 2 R v ) ( ≪ 1 10 6 km 10 km s − 1 M R E a more practical approach Solve perturbatively with respect to e

  14. order of magnitude e ∼ 10 − 5 ( M ⊙ ) 3 ( 10 7 km ) 2 ( ) 2 R v ) ( ≪ 1 10 6 km 10 km s − 1 M R E a more practical approach Solve perturbatively with respect to e

  15. zeroth-order solutions ( e = 0 ) Lens Equation ( x 2 + y 2 )( β x − x ) + x = 0 , ( x 2 + y 2 )( β y − y ) + y = 0 2 images x = x ± 0 ≡ f ± β x , y = y ± 0 ≡ f ± β y √ 1 + 4 β − 2 f ± ≡ 1 ± √ β 2 x + β 2 , β = y 2 (cf. a trivial solution ( x , y ) = (0 , 0) excluded)

  16. first-order solutions ( 0 < e ≪ 1 ) x − 3 β 2 )( f ± ) 2 − 1 (4 β 2 x ± = x ± 0 + x ± 1 = f ± β x + e ˜ β 2 ( f ± β 2 + 1)( f ± β 2 + 2) β x (3 β 2 − 4 β 2 y )( f ± ) 2 + 1 y ± = y ± 0 + y ± 1 = f ± β y + e ˜ β 2 ( f ± β 2 + 1)( f ± β 2 + 2) β y That’s all folks... ?

  17. first-order solutions ( 0 < e ≪ 1 ) x − 3 β 2 )( f ± ) 2 − 1 (4 β 2 x ± = x ± 0 + x ± 1 = f ± β x + e ˜ β 2 ( f ± β 2 + 1)( f ± β 2 + 2) β x (3 β 2 − 4 β 2 y )( f ± ) 2 + 1 y ± = y ± 0 + y ± 1 = f ± β y + e ˜ β 2 ( f ± β 2 + 1)( f ± β 2 + 2) β y That’s all folks... ?

  18. More solutions? Perturbing 2 zeroth-order solutions ⇓ always get 2 first-oder solutions. However, algebraic structure of the lens equation tells the existence of more than 2 solutions. How to get more solutions perturbatively? Perturbative generation from nothing?

  19. Perturbation around the excluded solution x = 0 + x 1 , ˜ y = 0 + y 1 ˜ Solutions for the “minor” images ( ) y ± = ± √ e x ± = 1 1 + 1 − 1 ˜ 2 e β x , ˜ 2 e 2 e β y Totally 4 images obtained!

  20. e β x β y (1) y num (2) y appr Error | (2) − (1) | 3 . 9 × 10 − 5 0.01 0.0 0.2 1.10087 1.10091 1 . 0 × 19 − 4 -0.89881 -0.89891 3 . 7 × 10 − 6 0.09950 0.099500 6 . 8 × 10 − 5 -0.10157 -0.10150 1 . 8 × 10 − 5 0.01 0.0 0.5 1.27780 1.27782 2 . 0 × 10 − 4 -0.77262 -0.77282 8 . 5 × 10 − 5 0.09809 0.09800 2 . 7 × 10 − 4 -0.10327 -0.10300 7 . 3 × 10 − 5 0.02 0.0 0.5 1.27479 1.27486 8 . 4 × 10 − 4 -0.76402 -0.76486 1 . 8 × 10 − 4 0.13802 0.13784 9 . 5 × 10 − 4 -0.14878 -0.14784 Error ∼ O ( e 2 ), also depends on β

  21. Amplification factor Perturbative solutions ˜ x ( β ) , ˜ y ( β ) work well. What about the amplification factor? can be directly calculated from � � � det ∂ ( x ± , y ± ) ( ) � � A ± = � = A ± 1 + e ∆ ± ( β ) � � � � 0 ∂ ( β x , β y ) � �

  22. Error of A ± e β x β y parity 0.01 0.0 0.2 + 0.45% 2.24% − 0.02 0.0 0.2 1.82% + 9.10% − 0.02 0.2 0.0 1.77% + 8.55% − 0.02 0.5 0.0 + 0.09% 4.14% − Not so good. Error often exceeds O ( e ).

  23. Better accuracy without higher-order calculations � � � det ∂ ( x ± , y ± ) ( ) � � A ± = � = A ± 1 + e ∆ ± ( β ) � � � � 0 ∂ ( β x , β y ) � � Pad´ e approximant ) − 1 ( ± ≡ A ± 1 − e ∆ ± ( β ) A P 0

  24. Better accuracy without higher-order calculations � � � det ∂ ( x ± , y ± ) ( ) � � A ± = � = A ± 1 + e ∆ ± ( β ) � � � � 0 ∂ ( β x , β y ) � � Pad´ e approximant ) − 1 ( ± ≡ A ± 1 − e ∆ ± ( β ) A P 0

  25. Error of A ± Error of A ± e β x β y parity P 0.01 0.0 0.2 + 0.45% 0.04% 2.24% 0.26% − 0.02 0.0 0.2 1.82% 0.15% + 9.10% 1.25% − 0.02 0.2 0.0 1.77% 0.20% + 8.55% 0.66% − 0.02 0.5 0.0 + 0.09% 0.02% 4.14% 0.80% − Pad´ e approximant successfully reduces error, without doing higher-order calculations.

  26. Error of A ± Error of A ± e β x β y parity P 0.01 0.0 0.2 + 0.45% 0.04% 2.24% 0.26% − 0.02 0.0 0.2 1.82% 0.15% + 9.10% 1.25% − 0.02 0.2 0.0 1.77% 0.20% + 8.55% 0.66% − 0.02 0.5 0.0 + 0.09% 0.02% 4.14% 0.80% − Pad´ e approximant successfully reduces error, without doing higher-order calculations.

  27. Changes in image properties image separation of two “major” images   2( β 2 x − β 2   y ) { } ∆ x ≡ x + − x − = ∆ x 0         e  1 + e × O (1)  1 − β 2 ( β 2 + 4) − 1  = ∆ x 0              only slightly changes Amplification di ff erence P ≃ 1 − 2 A di ff ≡ A + P − A − β 2 e can be significantly changed if β 2 ∼ e , even if e ≪ 1

  28. Changes in image properties image separation of two “major” images   2( β 2 x − β 2   y ) { } ∆ x ≡ x + − x − = ∆ x 0         e  1 + e × O (1)  1 − β 2 ( β 2 + 4) − 1  = ∆ x 0              only slightly changes Amplification di ff erence P ≃ 1 − 2 A di ff ≡ A + P − A − β 2 e can be significantly changed if β 2 ∼ e , even if e ≪ 1

  29. “Anomalous” Flux Ratio Non-spherical distorted lens, even if it’s tiny ( e ≪ 1), can cause significant amount of flux anomalies in the lensed images , whereas it only slightly changes the image positions. P ≃ 1 − 2 A di ff ≡ A + P − A − β 2 e “anomaly” = unexpectedly large di ff erence from a point mass case

  30. Summary Perturbative approach to a non-spherically distorted gravitational lens • Perturbatively generated solutions from “nothing” • E ffi cient Pad´ e approximant • “Anomalous” flux ratio by a tiny distortion?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend