particle physics phenomenology
play

Particle Physics (Phenomenology) Lecture 1/2 Peter Skands, Monash - PowerPoint PPT Presentation

Particle Physics (Phenomenology) Lecture 1/2 Peter Skands, Monash University THEORY PHENOMENOLOGY EXPERIMENT time g a ( ig s t a ij ) Figure by T. Sjstrand q j q i QCD Jets INTERPRETATION November 2019, Sydney Spring


  1. Particle Physics (Phenomenology) Lecture 1/2 Peter Skands, Monash University THEORY PHENOMENOLOGY EXPERIMENT time g a ( − ig s t a ij γ µ ) Figure by T. Sjöstrand q j q i QCD “Jets” INTERPRETATION November 2019, Sydney Spring School on Particle Physics & Cosmology

  2. <latexit sha1_base64="X7BHrRt8e7Fu1Pb2JkiMrpHFU=">ADZHicfVJNb9NAEN3YQEsoNKHihIRWRCAuF6nH84hUgUX1FORSFopTqL1Zp2u4rWt3TVSau2f7I0jF34H6yQkThsxkqXxm3nz3o4mzGImlev+qln2k6fP9vaf18cvHx12Gi+7s0F4T2SBqn4ibEksYsoT3FVExvMkExD2N6Hc6+lvXrn1RIliY/1DyjQ46nCYsYwcpA42btjo8p7MKOgwLFOJUQuaPicxvpgGN1K3gxm2r4MZAKk5mgcfEPvtTdIBKYFJu+gExSBfnI03qNSr347eodCnB7gBx58LJC5SUVBsEu9Y0L4317DO2bGcg5q4qhjtZLF6fO+VahVNgQHzoqHfzXD+m2N+P8dexXKmhypvbVaVjMvLGjZbrdDon/qkPTeKf+ciDyHEXsU5aYBVX48Z9MElJzmiSIylHCA3U8MC8VITHU9yCXNjDM8pQOTJtgoD4vFkWj4wSATGKXCfImC7TKDCXcs5D01nalA9rJbirNshV5A8LlmS5oglZCkV5DFUKy4uDEyYoUfHcJgIZrxCcovNnpW5y7pZwqMnP076noPajvf9pHXxZbWOfAWvAefALn4AJ8A1egB0jt7VnNaym9c+sI/sN8tWq7biHIGtsN/9BQ1BFcY=</latexit> 1) Units in Particle Physics ๏ The main particle-physics units of energy is eV (& MeV, GeV) • 1 electron-Volt = kinetic energy obtained by a unit-charge particle (eg an electron or proton) accelerated by potential difference of 1 Volt 1 eV = Q e · 1 V = 1 . 602176565(35) × 10 − 19 C · 1 J / C = 1 . 6 × 10 − 19 J • (So for accelerators, the beam energy in eV is a measure of the corresponding electrostatic potential difference) Planned linear accelerators (ILC, CLIC) could reach E CM ~ 1,000 GeV = 1 TeV ๏ The highest-energy (circular) accelerator LHC ~ 6500 GeV/beam. ๏ ๏ Using E=mc 2 we typically express all masses in units of eV/c 2 J= kg · m2 9 . 1 × 10 − 31 s 2 J s2 m e = 9 . 1 × 10 − 31 kg MeV /c 2 = m e 0 . 511 kg = m 2 MeV /c 2 m µ = 106 eV 5 . 7 × 10 − 12 eV s 2 An example J= 1 . 6 × 10 − 19 MeV /c 2 m τ = 1780 = m 2 (sometimes we forget to say c =3 × 10 8 m / s the 1/c 2 ; it is implied by the 511 × 10 3 eV /c 2 = quantity being mass) 2 � Particle Physics Peter Skands

  3. FOR A RELATIVISTIC Natural Units QUANTUM THEORY ๏ In fact, we use MeV and GeV for everything ! Example: • Define a set of units in which ħ = ϲ = 1 lengths → energies • Action [Energy*Time] : dimensionless ( ħ = 1) E λ All actions are measured in units of ħ ๏ • Velocity [Length/Time] : dimensionless ( ϲ = 1) HEP < 1 fm > 1 GeV All velocities are measured in units of c (i.e., β = v/c) ๏ gamma 1 pm 1 MeV • • Energy : dimension 1 [E] = eV, MeV, GeV, … • Energy : • Mass : dimension 1 (E=mc 2 ) • Mass : X-rays 0.1 nm 10 keV /c 2 ๏ E.g., m e = 0.511 MeV • Time : dimension -1 ([ ħ ]=[E*t]=1) • Time : UV 100 nm 10 eV ๏ Convert: u se ħ = 6.58 x 10 -22 MeV s to convert 1s ๏ E.g., τ μ = 2.2 μ s = 2.2 x 10 -6 s / (6.58 x 10 -16 eV s) = 3.3 x 10 -9 / eV • Length : • Length : dimension -1 (velocity is dimensionless) • Momentum : • Momentum : dimension 1 (same as energy and mass; E 2 -p 2 =m 2 ) � 3 Particle Physics Peter Skands

  4. <latexit sha1_base64="8XlvzAMyjhPDdM5b8qYwQu9Q02k=">ACFnicbVDLSsNAFJ34tr6iLt0MFsGCxqRWTRdCUQSXFawW2hom06kOnSTDzESMoV/hxl9x40IRt+LOv3HSFvF1YC6Hc+7lzj0+Z1Qq2/4wRkbHxicmp6ZzM7Nz8wvm4tKZjGKBSQ1HLBJ1H0nCaEhqipG6lwQFPiMnPvdw8w/vyZC0ig8VQknrQBdhrRDMVJa8sxNftEMYrgP14+28AZsXhOc8l7hS+DeTVaSrNwWPDNvW+Vyd1xoSburusUoWPZfXyRPBi6pnvzXaE4CECjMkZcOxuWqlSCiKGenlmrEkHOEuiQNTUMUENlK+2f14JpW2rATCf1CBfvq94kUBVImga87A6Su5G8vE/zGrHquK2UhjxWJMSDRZ2YQRXBLCPYpoJgxRJNEBZU/xXiKyQVjrJnA7hz8l/yVnRcrat4kpXzkYxjEFVsAqWAcO2AMVcAyqoAYwuAMP4Ak8G/fGo/FivA5aR4zhzDL4AePtE+w7nB8=</latexit> <latexit sha1_base64="CkYeHJmU4P/6DnCe+nBXawVonDE=">ACTnicfVFNS1tBFJ2Xqo2ptbFduhkMpV2F97SgGyG0my5cRDAxkEnDvMlNHJyZN8xHSXikf7Cb0l1/hpsuFNF58SGalF4YOHPOPdw7Z1ItuHVx/CeqvFhb3hZ3ay92nq9/a+87ZrM28YdFgmMtNLqQXBFXQcdwJ62gCVqYDz9PJLoZ9/B2N5ps7cTMNA0oniY86oC9SwDtNvRHpMXIanHxbwGJOT4B/R4jbMfxDl5zh0KU9IjXAZtgKL9aN/8emS9uw3oib8aLwKkhK0EBltYf132SUMS9BOSaotf0k1m6QU+M4EzCvEW9BU3ZJ9APUFEJdpAv4pj94EZ4XFmwlEOL9injpxKa2cyDZ2Sugu7rBXkv7S+d+OjQc6V9g4Uexg09gKHFIps8YgbYE7MAqDM8LArZhfUObCDxQhJMtPXgXd/WZy0Nw/dRofS7jqKJdtIc+ogQdohb6itqogxj6ia7QNbqJfkV/o9vo7qG1EpWed+hZVar3ore0Fw=</latexit> <latexit sha1_base64="8MNyaJx/lh8xno15rZGpZC6vxmQ=">ACP3icbZBPT9tAEMXlFIaCoT2MuqEVUvRHagYA6VUHvpEaQmIMUhGm/GyYpd2+yOI0Wv1kvfAVuvfbSQ6uKzc2IUL8G2mlp9+b0ey8OFfSku/8hZeL5cerX8urbyZnVtvb7xtmOzwghsi0xl5iQGi0qm2CZJCk9yg6Bjhcfx2bepfzxGY2W/qBJj0Nw1QmUgA51K938lOf/zCoyFoDVxzwaOoFo1RlHn1wJixcUdSgyI8o5UZWTPDZXBVhQjwWmrqmr9esNv7u/vhJ9D7kS4GwYtHjT9Wd2JBpvXYb9+GQ0yUWhMSiwthv4OfVKMCSFwqoWFRZzEGcwxK6TKWi0vXJ2f8U3HRnwJDPupcRn9P5ECdraiY5dpwYa2cfeFD7ndQtKwl4p07wgTMXtoqRQnDI+DZMPpEFBauIECPdX7kYgUuHXOTEJ6c/FR0Ws1gu9k62mkcfJ3Hsczesw/sEwvYHjtg39khazPBfrLf7C/7514f7z/3tVt64I3n3nHpR3fQMy8q4M</latexit> 2) Energy and Momentum in Particle Physics for massive particles, m ≠ 0 ๏ We define “4-momentum” as: Q: what does it mean p 0 = � mc that this is a “4-vector”? x µ → x 0 µ = Λ µ m ~ ν x ν v p = � m ~ ~ v = p 1 − � 2 ⇒ p µ → p 0 µ = Λ µ ν p ν = ๏ Zero-component = Relativistic Energy (/c), defined as : ๏ p µ = ( E/c, ~ p ) = ( E/c, p x , p y , p z ) ๏ p 2 = 0 : lightlike; p 2 > 0 : timelike; p 2 < 0 : spacelike Expand γ around small β : 4 � Particle Physics Peter Skands

  5. <latexit sha1_base64="Evz9vRkV1lL2waWs489gLDn+p4=">AB/XicbVDLSgMxFL1TX7W+xsfOTbAIFaTMVE3QtGNywr2Ae1YMmDU1mhiQj1KH4K25cKOLW/3Dn35i2s9Dq4V4nHMvuTl+zJnSjvNl5RYWl5ZX8quFtfWNzS17e6ehokQSWicRj2TLx4pyFtK6ZprTViwpFj6nTX94NfGb91QqFoW3ehRT+B+yAJGsDZS196L7zoiQReoJI6RM6ujrl10ys4U6C9xM1KEDLWu/dnpRSQRNSEY6XarhNrL8VSM8LpuNBJFI0xGeI+bRsaYkGVl06vH6NDo/RQEnToUZT9edGioVSI+GbSYH1QM17E/E/r53o4NxLWRgnmoZk9lCQcKQjNIkC9ZikRPORIZhIZm5FZIAlJtoEVjAhuPNf/ksalbJ7Uq7cnBarl1kcediHAyiBC2dQhWuoQR0IPMATvMCr9Wg9W2/W+2w0Z2U7u/AL1sc3ynmSMg=</latexit> <latexit sha1_base64="2aTwVR743TBLyMkXBFWgfsqw30Q=">ACEXicbVDLSgMxFM3UV62vUZdugkXoxjIzCropFEVwWcE+oC8yaYNTWZCkhHKML/gxl9x40IRt+7c+Tdm2i609UDC4Zx7ufceXzCqtON8W7mV1bX1jfxmYWt7Z3fP3j9oqCiWmNRxCLZ8pEijIakrqlmpCUkQdxnpOmPrzO/+UCkolF4ryeCdDkahjSgGkj9e2S6HV4DEU/+yvwpufBU5h0ONIjP0hEmhqhAnP69tFp+xMAZeJOydFMEetb391BhGOQk1ZkiptusI3U2Q1BQzkhY6sSIC4TEakrahIeJEdZPpRSk8McoABpE0L9Rwqv7uSBXasJ9U5mtqha9TPzPa8c6uOwmNBSxJiGeDQpiBnUEs3jgEqCNZsYgrCkZleIR0girE2IBROCu3jyMml4Zfes7N2dF6tX8zjy4AgcgxJwQWogltQA3WAwSN4Bq/gzXqyXqx362NWmrPmPYfgD6zPH1TLm28=</latexit> <latexit sha1_base64="W6uT/ruMP+gtdLGNOUyXZlz2qac=">ACBnicbVDLSgMxFM3UV62vUZciBIvgqsxUQTdCsQhuhAr2Ae10yKRpG5rMhCQjlKErN/6KGxeKuPUb3Pk3ZtpZaOuBJIdz7iX3nkAwqrTjfFu5peWV1bX8emFjc2t7x97da6golpjUcQi2QqQIoyGpK6pZqQlJE8YKQZjKqp3wgUtEovNdjQTyOBiHtU4y0kXz7UHQ7PIbCT+9LeG1epIeSJ9XbSbfs20Wn5EwBF4mbkSLIUPtr04vwjEnocYMKdV2HaG9BElNMSOTQidWRCA8QgPSNjREnCgvma4xgcdG6cF+JM0JNZyqvzsSxJUa8BUpkOqeS8V/Pase5feAkNRaxJiGcf9WMGdQTGCPSoI1GxuCsKRmVoiHSCKsTXIFE4I7v/IiaZRL7mpfHdWrFxlceTBATgCJ8AF56ACbkAN1AEGj+AZvI368l6sd6tj1lpzsp69sEfWJ8/9MmYKA=</latexit> <latexit sha1_base64="kvOafV+TE7hEgO7yRzwqFRQw54Y=">AB/3icbVDLSsNAFJ3UV62vqODGzWARXJWkCroRim5cVrAPaGKYTCft0JlkmJkIJXbhr7hxoYhbf8Odf+OkzUJbD1w4nHMv94TCkaVdpxvq7S0vLK6Vl6vbGxube/Yu3tlaQSkxZOWCK7IVKE0Zi0NWMdIUkiIeMdMLRde53HohUNInv9FgQn6NBTCOKkTZSYB+Ie4+n8BJ6KuUBhSKguRDYVafmTAEXiVuQKijQDOwvr5/glJNY4aU6rmO0H6GpKaYkUnFSxURCI/QgPQMjREnys+m90/gsVH6MEqkqVjDqfp7IkNcqTEPTSdHeqjmvVz8z+ulOrwMxqLVJMYzxZFKYM6gXkYsE8lwZqNDUFYUnMrxEMkEdYmsoJwZ1/eZG06zX3tFa/Pas2ro4yuAQHIET4IJz0A3oAlaAINH8AxewZv1ZL1Y79bHrLVkFTP74A+szx8VqZWB</latexit> <latexit sha1_base64="m+ez+K4NIMxg7xApdXwrYKLXcA=">AB+3icbVDLSgMxFM3UV62vsS7dBIvgqsxUQTdC0Y3LCvYB7XTIpJk2NMmEJCOW0l9x40IRt/6IO/GTDsLbT1wL4dz7iU3J5KMauN5305hbX1jc6u4XdrZ3ds/cA/LZ2kCpMmTliOhHShFBmoYaRjpSEcQjRtrR+Dbz249EaZqIBzORJOBoKGhMTJWCt2y7Pd4CmWY9WvI+zUYuhWv6s0BV4mfkwrI0Qjdr94gwSknwmCGtO76njTBFClDMSOzUi/VRCI8RkPStVQgTnQwnd8+g6dWGcA4UbaEgXP198YUca0nPLKTHJmRXvYy8T+vm5r4KphSIVNDBF48FKcMmgRmQcABVQbNrEYUXtrRCPkELY2LhKNgR/+curpFWr+ufV2v1FpX6Tx1Ex+AEnAEfXI6uAMN0AQYPIFn8ArenJnz4rw7H4vRgpPvHIE/cD5/ACmLkzY=</latexit> Reminder: Relativistic Centre-of-Mass The frame in which the total 3-momentum, p = 0 defines the rest frame of a particle, or the CM frame for a system of particles In that frame , the total energy is equal to the invariant mass = E CM For a single particle, at rest p µ = ( m, 0 , 0 , 0) p µ p µ = m 2 µ = E 2 − p 2 = m 2 Lorentz invariant Squared rest mass In any frame For a system of particles: X p µ p µ = p µ p µ = E 2 i CM Lorentz invariant squared invariant mass of the system i How to find the CM frame of (a system of) particles? 1. Sum up their 3-momenta ➜ total p . If it is zero: done 2. If non-zero, find their overall velocity β = p / E 3. Construct and do the relevant (inverse) Lorentz boost. (& Check 1). 5 � Particle Physics Peter Skands

  6. Feynman diagrams and 4-momentum conservation ๏ Consider the QED vertex: time γ → e − + e − e − + e + → γ 1) 2) 3) e → e + γ ๏ What about 4-momentum conservation? 1) Electron at rest decaying to a recoiling electron + a photon? ๏ 2) Two massive particles reacting to produce a massless photon? ๏ 3) Massless photon decaying to two massive electrons? ๏ • This all sounds very strange (even for relativity) � 6 Particle Physics Peter Skands

  7. Feynman diagrams and 4-momentum conservation ๏ Consider the QED vertex: time γ → e − + e − e − + e + → γ 1) 2) 3) e → e + γ ๏ What about 4-momentum conservation? E 2 � p 2 6 = m 2 • At least one of the involved particles must have • Equivalent to Heisenberg Δ E but here expressed in L.I. form • We call such particles virtual ; and say they are off mass shell � 7 Particle Physics Peter Skands

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend