orienta onal phase transi ons and the assembly of viral
play

Orienta(onal Phase Transi(ons and the Assembly of Viral Capsids i) - PowerPoint PPT Presentation

Orienta(onal Phase Transi(ons and the Assembly of Viral Capsids i) Lorman-Rochal theory and the Landau theory of orienta5onal ordering in liquid crystals and glasses. ii) Extensions of Lorman-Rochal theory. Orienta5onal ordering in


  1. Orienta(onal Phase Transi(ons and the Assembly of Viral Capsids i) Lorman-Rochal theory and the Landau theory of orienta5onal ordering in liquid crystals and glasses. ii) Extensions of Lorman-Rochal theory.

  2. Orienta5onal ordering in liquid crystals and glasses • Nema5c liquid crystals. Order Parameter Nema5c Isotropic fluid 0 T c Temperature First-order phase transi5on Order parameter ( ) 0 cos θ P 2 Second Legendre polynomial P 2 0 (x) = (3x 2 -1)/2 ?

  3. • Biaxial Nema5cs (Freiser, 1970) Two order parameters: S and T S = T = 0 isotropic ê S ≠ 0, T = 0 uniaxial nema5c ê S ≠ 0, T ≠ 0 biaxial nema5c Order parameters S = P 0 (cos θ ) 2 ( ) = P ( ) T = P 2 (cos θ )exp i ϕ − 2 (cos θ )exp − i ϕ 2 2 P 2 2 (x) = 3 (1-x 2 ) Associated Legendre polynomials ??

  4. • General case: measure the density ρ(Ω) of molecules with orienta5on Ω. • ``Spherical Fourier decomposi5on”. ∞ + L ∑ ∑ ( ) = ( ) ρ Ω Q L , M Y L , M Ω L = 0 M = − L Spherical Harmonics • ( ) ∝ P ( ) exp( iM ϕ ) M cos θ Y L , M θ , ϕ L Expansion coefficients Q L, M Orienta:onal order parameter set • Infinite hierarchy of Orienta5onal Transi5ons • Biaxial nema5cs: L = 2, M = 0, ±2 • Cholesterics, blue phases: L = 2, M = 0, ±1, ±2 Hornreich & Shtrikman (1980, 1981) . • “Cuba5c” liquid crystal: L = 4 Nelson & Toner (1981)

  5. Icosahedral Glasses/Quasicrystals: L=6 ( Steinhardt, Nelson, Ronchef 1983) • • ρ(Ω): surface density modula5on of cluster of atoms in liquids near mel5ng . (no posi5onal order) ( ) ρ Ω HCP cluster FCC cluster Icosahedral cluster • What is the best choice for the symmetry of the clusters? Lev Landau • Rules of Landau Theory

  6. Rule # 1: Free energy = Sum of the scalar invariants of the order parameters Q L,m (under group SO(3) of rota5ons). Rule # 2: Use one ``irreducible representa5on”. Pick one single L. (but which L?) Rule # 3: Minimize free energy with respect to Q L,M . ``Wigner 3-j symbol” ⎛ ⎞ + L L L L ∑ ∑ 2 F = r + w + u { Q 4 } + .. ⎜ ⎟ Q L M 1 Q L M 2 Q L M 3 Q L M { } M 1 M 2 M 3 ⎝ ⎠ − L ≤ M 1,2,3 ≤ L M = − L M 1 + M 2 + M 3 = 0 quadra5c invariant cubic invariant quar5c invariant • r, w, u : Phenomenogical parameters. • Simpler: expand free energy in powers of orienta5onal density ρ (Ω) { } 2 + w ρ ! 3 + u ρ ! 4 + ... ( ) = ρ ! dS r ρ ! { } ( ) ( ) ( ) ( ) ∫ F r r r r Surface + L ∑ ( ) = ( ) ρ Ω Q L , M Y L , M Ω Insert M = − L

  7. • Free energy minimum for L=6 has icosahedral symmetry ⎛ ⎞ 7 7 ( ) = Q 6 Y 0,0 + ρ Ω 11 Y 6, 5 − 11 Y 6, − 5 ⎜ ⎟ ⎝ ⎠ 2 + wQ 6 3 + uQ 6 6 = rQ 6 4 • L = 6 ``icosahedral spherical harmonic” F • Q 6 = Order parameter ``amplitude” Icosahedral Isotropic Q 6 0 Q 6 r 0 First-order transi5on (cubic term non-zero) • Icosahedral state is thermodynamically stable against fluctua5ons.

  8. + 15 Capsid Canine Parvovirus ∑ ( ) ∝ ( ) ρ 15 Ω Q 15, M Y 15, M Ω M = − 15 L=15 Icosahedral spherical harmonic

  9. For certain L there is a unique linear combina5on Y h (L) of the Y L,M that transforms as a scalar or as a pseudo-scalar under the icosahedral symmetry group. Even L L = 6, 10, 12, 16, .... • L=10 L=6 Y h (L) scalar density even under inversion r è - r Odd L L = 15, 21, 25, 27, ...... • pseudo-scalar density Y h (15) odd under inversion • Chiral pairs (isomers)

  10. Rochal & Lorman: capsid density cannot be presented by the even L scalars amino-acids Capsid densi5es are not even under inversion: only odd L spherical harmonics . • Smallest viral capsids should correspond to Y h (L=15): T=1 viruses. • ( ) = Q 15 Y h 15 ( ) ρ Ω Parvovirus (T=1) :

  11. 2 + uQ 15 15 = r Landau free energy (L=15): 4 F 15 Q 15 F Cubic term zero for any odd L ! 15 r > 0 r Q 15 15 “Spontaneous chiral symmetry breaking transi5on”. r r < 0 r 15 0 15 − r Q 15 Q 0 = 15 − Q 0 0 Q 0 2 u

  12. Ques5ons 1) Second-order transi5on? Collec:ve assembly pathway Cowpea Chloro5c Movle Virus (CCMV) R. Cadena-Nava, M. Comas-Garcia, R. Garmann, A. Rao C. M. Knobler, and W. M. Gelbart J. Virol. 86, 3318 (2012) . R. Garmann, M. Comas-Garcia, A. Gopal, C. M. Knobler, and W. M. Gelbart J. Mol. Biol. 426, 1050 (2013) • Fluorescence thermal shiw assay CCMV: first-order transi5on Guillaume Tresset, Jingzhi Chen, Maelenn Chevreuil, Naïma Nhiri, Eric Jacquet, and Yves Lansac Phys. Rev. Applied 7, 014005, 2017

  13. 2) Spontaneous chiral symmetry breaking transi5on at r 15 = 0. Uniform state is already chiral . 3) Thermodynamic stability against fluctua5ons: expand free energy around Y h (15) solu5on + 15 ∑ ( ) = const . + ρ 15 Y h (15) + ( ) ρ Ω δ Q 15, M Y 15, M Ω M = − 15 fluctua5on 15 15 15 = 1 ∑ ∑ δ F C M , M ' δ Q 15, M δ Q 15, M ' Fluctua5on free energy: 2 M = − 15 M ' = − 15 C M,M’ : 31 x 31 stability matrix should have posi5ve eigenvalues. • :

  14. 21 posi5ve eigenvalues 3 zero eigenvalues (rota5ons) 7 nega5ve eigenvalues ! saddle-point • L owest free energy state in the L = 15 sector: • Symmetry group D 5 : One five-fold symmetry axis. Five “odd” two-fold axes. • All odd icosahedral spherical harmonic states are unstable. Only L = 6, 10, 12, and 18 icosahedral states are stable. (L=16 is unstable, Mavhews). •

  15. Should we perhaps take another look at the even L states ? Picornavirus: assembles from 12 iden5cal L=6 chiral pentagons composed of 15 proteins: capsomers • Interpret ρ (Ω) as the density of capsomer centers. Add chiral capsomers. CCMV: assembles from 32 chiral capsomers L=10 12 pentamers + 20 hexamers. • But .... no signature of chirality in the density of capsomer centers??

  16. Extensions of Lorman-Rochal • Step 1 : Landau- Brazovskii theory • smec5c-nema5c transi5on • chiral liquid crystals (cholesterics) • weak solidifica5on (block co-polymers). { } 2 + r ρ ! 2 + w ρ ! 3 + u ρ ! ) ρ ! ( ∇ 2 + k 0 ( ) ( ) ( ) ( ) ∫ LB = 4 2 F d S r r r r • Wavenumber k 0 =2π/a. Dominant molecular length-scale: a = protein size. • First term minimized by density waves ρ ! n ⋅ ! ( ) ( ) ∝ exp i k 0 ˆ r r n = unit vector n ⋅ ! ∇ 2 + k 0 ( ) exp i k 0 ˆ ( ) = 0 2 r

  17. • Look for combina:ons of density waves ( ) ρ ! 3 n j . ! ∑ ( ) = ρ 0 cos k 0 ˆ r r j = 1 3 ⎛ ! ⎞ ( ) k j . ! ∑ ρ 0 ≠ 0 cos r ⎜ ⎟ ⎝ ⎠ j ! k j = k 0 ˆ n j Pezzuf et al. • First-order transi5on: cubic term in Landau energy non-zero • Block co-polymers (L. Leibler): compe55on between hexagonal phases, lamellar phases and other symmetries.

  18. Landau-Brazovskii on a spherical surface. ∞ + L ∑ ∑ ( ) = ( ) • Insert ρ Ω Q L , M Y L , M Ω in Landau-Brazovskii free energy. L = 1 M = − L ⎛ ⎞ + L L 1 L 2 L 3 ∑ ∑ ∑ 2 LB = + w + u { Q 4 } ⎜ ⎟ Q L 1 , M 1 Q L 2 , M 2 Q L 3 , M 3 F r L Q L , M { } M 1 M 2 M 3 ⎝ ⎠ M = − L L 1 L 2 L 3 M 1 M 2 M 3 L M 1 + M 2 + M 3 = 0 • Sum over all L. r L L=16 L=15 2 ⎡ ⎤ r L = r + L ( L + 1) − ( k 0 R ) 2 • r 16 r 15 ⎣ ⎦ r k 0 R 15.5 16.5 Predict the L value of a capsid ! 16 r L has minimum when k 0 R ≈ L

  19. Step 2 : Include chirality directly in free energy Chiral liquid crystals: add lowest-order chiral pseudoscalar to the Landau free energy of the achiral liquid crystal. P-G De Gennes scalars lowest non-zero pseudo-scalar • variant of ``Helfrich-Prost’’ • Sanjay Dharmavaram • • Now let’s try again

  20. Icosahedral Isotropic • Stable minima for L=6, 10, 12, and 16. Q L L=10 L=6 r L 0 • Thermal fluctua:ons around the isotropic and Y h (L) states are chiral. • No spontanous chiral symmetry breaking at r L = 0 . è Conclusion: L = 6, 10, 12, and 16 icosahedral spherical harmonics are possible representa5ons for collec5ve capsid assembly. ç • But .... odd L icosahedral spherical harmonics states remain unstable!

  21. L=15 icosahedral state: L=16 icosahedral state: unstable unstable L = 16 L = 15 k 0 R 15.5 16.5 16 • r 15 = r 16 when k 0 R = 16 • Could there be a stable icosahedral order parameter composed of two one-dimensional ``irreducible representa5ons” of SO(3) near k 0 R = 16 ? • L = 15 + 16 space has 31+33 = 64 dimensions

  22. r I sotropic State k 0 R 15.5 16 ≈ 16.5 0 Non-Icosahedral States Non-Icosahedral States Second-Order Transi/ons Stable L = 15+16 Icosahedral States Lev Landau You violated my #2 rule!! k 0 R = 15.5 k 0 R = 16.5 15 + 16 stable mixture, mostly L = 15, 15 + 16 stable mixture, mostly L = 16 chiral, 60 maxima chiral, 72 maxima Dharmavaram, S., Xie, F., Klug, W., Rudnick, J., & Bruinsma, R. (2017). Orienta:onal phase • No spontaneous chiral symmetry breaking! transi:ons and the assembly of viral capsids . Physical Review E, 95(6), 062402.

  23. Examples k 0 R = 16.5 k 0 R = 15.5 Parvovirus Polyomavirus Maxima: single capsid protein s 72 maxima: capsid protein pentamers

  24. Numerical simula5ons: 72 par5cles on a spherical surface D 5 D 3 Icosahedral Tetrahedral D 2 • Icosahedral state: very fragile . Competes with other states that have D 3 , D 5 , T symmetry. S. Paquay, H. Kusumaatmaja, D. Wales, R. Zandi, and P. van der Schoot, Energe5cally favoured defects in dense packings of par5cles on spherical surfaces hvp://arxiv.org/abs/1602.07945 WHY WAS ICOSAHEDRAL SYMMETRY SELECTED FOR VIRUSES?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend