the mu2e crystal calorimeter
play

The Mu2e crystal calorimeter Eleonora Diociaiuti LNF-INFN and Tor - PowerPoint PPT Presentation

FERMILAB-SLIDES-18-79E The Mu2e crystal calorimeter Eleonora Diociaiuti LNF-INFN and Tor Vergata University on behalf of the Mu2e calorimeter group This document was prepared by Mu2e collaboration using the resources of the Fermi National


  1. FERMILAB-SLIDES-18-79E The Mu2e crystal calorimeter Eleonora Diociaiuti LNF-INFN and Tor Vergata University on behalf of the Mu2e calorimeter group This document was prepared by Mu2e collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. July 7, 2018 XXXIX INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

  2. Talk overview • The Mu2e experiment - CLFV introduction - Experiment layout • Mu2e Electromagnetic Calorimeter - Components - Performance - Production status E. Diociaiuti | LNF-INFN 2 07/07/2018

  3. Charged Lepton Flavor Violation M o r e i n • CLFV processes are forbidden in SM f o i n G . P e z z u l l o Even allowing neutrino oscillation BR ~ 10 -54 t a l k - • Observation of a CLFV process: clear evidence of New Physics • Mu2e : Coherent muon conversion in the electric field of a nucleus Broad sensitivity across different models - E e = m µ c 2 − ( B.E. ) 1 S − E recoil = 104 . 96 MeV Very clear signature: monoenergetic electron - µ-e conversion in the field of a nucleus µ − + N ( A, Z ) → e − + N ( A, Z ) µ − + N ( A, Z ) → ν µ + N ( A, Z − 1) < 8 . 4 × 10 − 17 8 × 10 − 17 R µe = Nuclear capture of muonic Al atom • Improve of 4 orders of magnitude the previous limit set by the SINDRUM II experiment (6.1× 10 -13 ) E. Diociaiuti | LNF-INFN 3 07/07/2018

  4. The Mu2e experiment PRODUCTION SOLENOID Protons hitting the target and producing mostly π • Graded magnetic field reflects slow forward π • TRANSPORT SOLENOID π decay to µ • Selection and transportation of low momentum µ - • 25 m DETECTOR SOLENOID Capture µ on the Al target • Momentum measurement in the tracker and energy reconstruction with calorimeter • CRV to veto cosmic ray events • E. Diociaiuti | LNF-INFN 4 07/07/2018

  5. Calorimeter requiremens High acceptance for reconstructing energy, time and position of signals for : - Particle Identification: e/µ separation à reject µ background Improve the track pattern recognition - Standalone trigger - @ 105 MeV Crystals coupled with Silicon Calorimeter requirements PhotoMultipliers(SiPM) Light Yield(photosensor)>20 pe/MeV • • energy resolution σ E /E <10% Fast signal for pileup and timing • • timing resolution σ(t) < 500 ps Survive an high radiation • • position resolution < 1 cm environment • Work in vacuum @ 10 -4 Torr − Total Ionizing Dose (TID) of 90 krad/5 year for crystal • 1 T Magnetic Field − TID of 75 krad/5 year for sensor − 3x10 12 n/cm 2 for crystal − 1.2x10 12 n/cm 2 for sensor E. Diociaiuti | LNF-INFN 5 07/07/2018

  6. Calorimeter Design 2 disks each with 674 undoped (34x34x200)mm 3 square pure CsI crystals Readout: 2 UV-extended SiPMs/crystal • Analog FEE and digital electronics located • in near-by electronics crates Source for energy calibration • Laser system for monitoring gain stability • E. Diociaiuti | LNF-INFN 6 07/07/2018

  7. Mu2e EMC: MC performance The calorimeter energy resolution is estimated taking into account signal and predominant background, as the difference of the conversion electron energy and the cluster energy. FWHM/2,35 = 3.8 ± 0.1 MeV The overall resolution depends on the crystal features Longitudinal Response Uniformity LRU=RMS/MEAN of LO along the crystal E. Diociaiuti | LNF-INFN 7 07/07/2018

  8. Crystal preproduction • 24 crystals from three different vendors: SICCAS , Amcrys , Saint Gobain 22 Na source to test crystal properties along the crystal axis • • Crystals coupled in air to an UV-extended PMT Optical properties: • 100 pe/MeV with PMT − readout − LRU < 5% − Fast/Total>75% Radiation hardness • − Smaller than 40% LY loss @ 100 krad − Radiation Induced Noise <0.6 MeV Selected vendors: SICCAS and Saint Gobain E. Diociaiuti | LNF-INFN 8 07/07/2018

  9. SiPM preproduction • 2 arrays of three 6x6 mm 2 SiPMs ~ 150 V total active area of (12x18) mm 2 - 50 µm pitch - 6x6 mm 2 • Photon Detection Efficiency (@ 315 nm)>20% • The series configuration à narrower signals 150 Pre-production SiPMs (3 × 50 Mu2e SiPMs • from Hamamatsu , SensL and AdvanSiD ): 3 × 35x6 cells fully characterized (V op , G, I dark , PDE) - 1 sample/vendor exposed up to a fluence of - 8.5 × 10 11 n 1MeVeq /cm 2 (@ 20 ° C) Selected vendor: Mean Time To Failure estimated by operating 15 Hamamatsu - SiPM at 50 °C for 3.5 months à MTTF > 0.6x10 6 h I [mA] Hamamatsu • 60 SensL • AdvanSiD 50 • 40 30 20 10 9 10 0 0 100 200 300 400 500 600 700 800 2 Integrated flux [n /cm ] 1MeV E. Diociaiuti | LNF-INFN 9 07/07/2018

  10. Module-0 Large size prototype: 51 crystals coupled to 102 sensors t Goals: • wrapped Test the performances - Test integration and assembly - procedures e - beam (60-120 MeV), May 2017 - Orthogonal and 50° incidence • (CE) Operate under vacuum, low - temperature and irradiation tests • Readout: 1 GHz CAEN digitizers (DRS4 chip), 2 boards x 32 channels E. Diociaiuti | LNF-INFN 10 07/07/2018

  11. Module-0: Energy resolution Orthogonal incidence • Single particle selection Entries/1 MeV Entries Entries 1902 1902 160 Mean Mean 87.87 87.87 • Calibration: Std Dev Std Dev 7.702 7.702 140 2 2 χ χ / ndf / ndf 23.5 / 12 23.5 / 12 Cosmic - η η 0.2011 0.2011 ± ± 0.0846 0.0846 120 σ σ 4.723 4.723 ± ± 0.199 0.199 Beam - 100 µ µ 89.48 89.48 ± ± 0.29 0.29 1552 1552 50.2 50.2 N N ± ± 80 Orthogonal Run: 60 DATA σ E ~ 5% MC 40 Tilted Run : 20 σ E ~ 7.5% 0 0 20 40 60 80 100 120 @ E beam = 100 MeV E [MeV] 50° incidence 10 90 Entries/ 1 MeV [%] Orthogonal Beam Entries Entries 1190 1190 9 80 dep 2 2 χ χ / ndf / ndf 26.39 / 27 26.39 / 27 Beam @ 50 ° /E 8 70 σ η η 0.07021 0.07021 0.04812 0.04812 ± ± 7 60 σ σ 6.572 6.572 ± ± 0.202 0.202 6 µ µ 88.12 88.12 ± ± 0.38 0.38 50 a ⊕ b σ E 5 1108 1108 33.8 33.8 N N ± ± E ⊕ c √ E = 40 E 4 30 2 2 DATA χ χ / ndf / ndf 0.8783 / 2 0.8783 / 2 χ χ 2 2 / ndf / ndf 3.142 / 3 3.142 / 3 3 a a 0.6 0.6 ± ± 0 0 a a 0.6 0.6 0 0 ± ± MC 20 2 b b 0.2732 0.2732 0.02913 0.02913 ± ± b b 0.3747 0.3747 ± ± 0.045 0.045 c c 4.05 4.05 0.2705 0.2705 ± ± c c 5.863 5.863 0.3911 0.3911 ± ± 10 1 0 0 0 20 40 60 80 100 120 0.05 0.06 0.07 0.08 0.09 0.1 0.11 E [GeV] E [MeV] dep E. Diociaiuti | LNF-INFN 11 07/07/2018

  12. Module-0: Single Sensor Time resolution Amplitude [mV] 350 • Log Normal fit on leading edge TimeHist TimeHist 300 2 2 Χ / ndf / ndf 106.6 / 20 106.6 / 20 Constant Fraction method used CF = 5% 250 η 0.6526 0.6526 0.0444 0.0444 • σ 17.12 17.12 1.21 1.21 200 • Comparison between 1GHz (TB sampling) and 216.6 216.6 0.7 0.7 μ 150 200 MHz (Mu2e sampling) shows no deterioration N N 8782 8782 640.2 640.2 100 in the resolution 50 0 Entries / (0.075 ns) 250 0 200 400 600 800 1000 Entries Entries 1531 1531 t [ns] Central Crystal 2 2 / ndf / ndf 19.56 / 15 19.56 / 15 200 σ (T1+T2)/ ! ~ 132 ps Constant Constant 240.9 240.9 7.6 7.6 150 @ E beam = 100 MeV Mean Mean 0.1664 0.1664 0.0049 0.0049 100 Sigma Sigma 0.1874 0.1874 0.0035 0.0035 50 0.5 [ns] o 0.45 Beam at 0 - Hamamatsu 0 T 1.5 1 0.5 0 0.5 1 1.5 σ Cosmic Rays - Hamamatsu t [ns] Δ 0.4 o Beam at 50 - SensL 0.35 Cosmic Rays - SensL Central Crystal 0.3 σ t = a 0.25 E ⊕ b 0.2 0.15 0.1 2 2 / ndf / ndf 2 2 / ndf / ndf χ χ 3.081 / 5 3.081 / 5 χ χ 5.155 / 3 5.155 / 3 a a a a 8.906 8.906 ± ± 0.2043 0.2043 6.858 6.858 ± ± 0.1425 0.1425 0.05 b b 0.118 0.118 ± ± 0.007005 0.007005 b b 0.0911 0.0911 ± ± 0.004349 0.004349 0 10 20 30 40 50 60 70 80 90 100 Energy [MeV] E. Diociaiuti | LNF-INFN 12 07/07/2018

  13. QA room @ FNAL for production • QA tests started on March 2018 ~1000 SiPMs tested (25% of the total number) - ~300 crystals (23% of the total number) - CsI dimensional test CsI RIN CsI QA Motor support Motor on the back moves source + tagger 6 crystals tested at the same time + tagger CS 137 holder Na 22 behind a Lead shielding + tagger UV PMT 2 SiPMs per crystal Diffusing sphere Motor for (Gain measurement) Tyvek cap CsI holder TranslaKon motor RotaKng motor (CsI & sphere) (to test a and b sides) LED SiPM Power driver SIPM dimensional test SiPM QA SiPM MTTF E. Diociaiuti | LNF-INFN 13 07/07/2018

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend