organoruthenium chemistry
play

Organoruthenium Chemistry Dongmin Xu 03/02/19 d 8 , second-row, - PowerPoint PPT Presentation

Baran Group Meeting Organoruthenium Chemistry Dongmin Xu 03/02/19 d 8 , second-row, variable ox. states and geometries = versatile reactivity Ruthenium Hydrogenation Useful Reviews: d 8 second-row transition metal Oxidation


  1. Baran Group Meeting Organoruthenium Chemistry Dongmin Xu 03/02/19 d 8 , second-row, variable ox. states and geometries = versatile reactivity Ruthenium • Hydrogenation Useful Reviews: d 8 second-row transition metal • Oxidation • Murahashi, Chem. Rev. 1998 , 2599. Silvery-white, metallic appearance • Trost, Chem. Rev. 2001 , 2067. • Ruthenacycle mediated reactions Possible oxidation states: -2 to +8 • Alcaide, Chem. Rev. 2009 , 3817. • Addition to Ru π complexes Toxicity not well studied except RuO 4 • Ru-catalyzed olefin metathesis: • Ru vinylidene mediated reactions Density = 12.45 g/cm 3 , m.p. = 2334 °C (8 th in metals) Grubbs, Chem. Soc. Rev. , 2018 , 4510. • C-H activation Hoveyda, JOC , 2014 , 4763. 6 th rarest element in Earth’s crust (after Os, Rh, Ir, Re, Pd) • Metathesis • Photoredox: MacMillan, Chem. Rev. • Olefin isomerization 2013 , 5322. Important events in the history of Ru: • Cyclopropanation NOT covered in this group meeting: • 1650s: Platinum alloy (contains Pt, Ru, Os, Rh, Pd, Ir) was discovered • Radical addition • Reactions using Ru as a Lewis acid • 1844: Karl Ernst Claus discovered ruthenium by dissolving crude Pt with aqua • Photochemistry • Ru-catalyzed click reaction regia and examining the residues • 1953: Djerassi discovered the oxidizing capability of RuO 4 • Cross coupling In the appendices: • 1965: Allen and Senoff reported an unprecedented [Ru(NH 3 ) 5 (N 2 )]X 2 complex • Syntheses of common Ru complexes • 1987: TPAP was first synthesized by Ley and Griffith • 1992: Grubbs et al reported the first Ru carbene catalyst for olefin metathesis Hydrogenation: Applications: Chemoselective hydrogenation with H 2 : • Adding 0.1% Ru to titanium increases its corrosion resistance by 100 times “Compared to Rh, Ir, and Co, ruthenium complexes generally have less • Hardening of Pt and Pd; used in effective catalytic activities for hydrogenation of simple alkenes.” manufacture of jewelry and electrical contacts O O Me Me • Ru-Mo superconductors RuCl 2 (PPh 3 ) 3 (cat.) Fun Facts: Me Me H 2 (100 atm), 50 °C • Named after Ruthenia , a Latin word that refers to Russia 94% • Ru has 7 natural stable isotopes, along with 34 radioisotopes • Global production ~12 tons per year; projected world reserve ~5000 tons O O - Mostly as byproduct of copper, nickel, or platinum mining Tsuneda, Bull. Chem. Soc. Jpn. 1973 , 279. • Current market price: $266/ozt, or $8.55/g Aldrich price: $112/g (200 mesh powder, 99.9% trace metal basis) • Percentage of Ru in mined platinum group metal mixture varies greatly RuCl 2 (CO)(PPh 3 ) 3 (cat.) - e.g. 11% in South Africa vs. 2% in certain parts of Russia H 2 (14 atm), 158 °C • Parker 51 fountain pen has a 14K gold nib tipped with 96.2% Ru and 3.8% Ir 95% Fahey, JOC 1973 , 80. [Ru], ZrO 2 , ZnSO 4 (aq) “bilayer catalytic system” • Developed by Asahi H 2 (50 atm), 150 °C Chemical Co., Japan >60% • >50000 tons annually Nagahara, Rev. J. Surf. Sci. Technol. Avant-Garde 1992 , 951.

  2. Baran Group Meeting Organoruthenium Chemistry Dongmin Xu 03/02/19 - Olefin dihydroxylation Transfer hydrogenation: OH Pros: homogeneous reaction RuCl 3 (7 mol%) AH 2 M R OH avoids hazardous H 2 NaIO 4 no pressurization needed OH EtOAc-H 2 O-MeCN Cons: limited scope Shing, ACIEE 1994 , 2312 O 58% 0.5 - 3 min lower efficiency than direct [H] MH 2 A no universal proton donor • Low yield if diol too water-soluble; cleavage in the aqueous phase by NaIO 4 R H (screening needed) - Olefin epoxidation H RuCl 2 (PPh 3 ) 3 RuCl 3 (cat.) O Ph Ph (1 mol%) Ph Ph t Bu t Bu OH O Me Me MeOH, 150 °C, 5 h H ( cis:trans = 1:4) 78% Me Me 90% N N Maitlis, J. Organomet. Chem. 1984 , c7 NaIO 4 Eskenazi, J. Chem. Soc. RuCl 2 (PPh 3 ) 3 CH 2 Cl 2 -H 2 O Chem. Commun. 1985 , 1111. (0.25 mol%) - α -oxidation of ethers O HCOOH, 180 °C, 6 h N N 76% H O RuO 2 (cat.) O Ph Watanabe, Bull. Chem. Soc. Jpn. 1984 , 2440. C 9 H 19 OMe NaIO 4 C 9 H 19 OMe CCl 4 -H 2 O-MeCN Oxidation: 85% 83% Sharpless, JOC 1981 , 3936 Ley-Griffith oxidation : TPAP, NMO - Oxidation of allenes and alkynes RuO 4 oxidation: often generated in situ with cat. RuCl 3 /RuO 2 and NaIO 4 - Oxidation of 1° and 2° alcohols - Degradation of aromatic rings to carboxylic acid - Oxidative cleavage of olefins - C-H oxidation O RuCl 3 (2 mol%) (+ 80% unreacted SM) Oxidation via oxoruthenium species NaIO 4 H • Generation of Ru oxo species from peroxyacids CCl 4 -H 2 O Ru n+1 O OR nBu Ru n + ROOOH 17% Ru n+2 O nBu * Can also be generated under aerobic conditions O RuCl 3 (2 mol%) Me Me Me OH NaIO 4 OH RuCl 3 (cat.) O CCl 4 -H 2 O-MeCN O 88% (if NaIO 4 is used) AcOOH Sharpless, JOC, 1981 , 3936 DCM-H 2 O-MeCN CO 2 H 67% • Sluggish reaction due to formation of insoluble Ru-carboxylate complexes 91% • Addition of MeCN causes rapid decomplexation of carboxylates and restores Murahashi, JOC 1993 , 2929. Mechanism: Ru IV catalytic activity of Ru O (If no H 2 O, get O H 2 O O “To our disadvantage, we organic chemists too often ignore even the most ele- epoxidation mentary aspects of the coordination chemistry of the metals we employ as Ru V H then β -H instead) catalysts or reactants” – Barry Sharpless elim. OH

  3. Baran Group Meeting Organoruthenium Chemistry Dongmin Xu 03/02/19 - When no allylic protons are present: Ruthenacycle Mediated Transformations: Ph Ph 4% Ru(cod)(cot) Alkyne + simple olefin: formal ene reaction + Ph CO 2 Me CO 2 Me pyridine, 80 °C RuClCp(cod) R EtO 2 C 85% EtO 2 C + Ph 3 R DMF, 100 °C Wantanabe, Chem. Soc. Chem. Commun. 1991 , 598. 3 50% (R = COCH 3 ) H R 3 R 2 R 2 (6:1 branched:linear) R 3 • Ru forced to eliminate R.E. β -H elim. with endocyclic hydride Trost, JACS 1995 , 615. PDT • Higher energy process, R 1 R 4 R 4 O RuClCp*(cod) R 1 not observed when Ru RuH OH Ph + Ph H allylic protons are H DMF, 100 °C present Alkyne + norbornene: formal [2+2] 85% CO 2 Me (3:1 branched:linear) RuH 2 (CO)[PR 3 ] Mechanism: CO 2 Me (cat.) + R 2 cyclo- H a R 3 R 2 R 3 H a PhH, 80 °C 87% R 2 CO 2 Me β -H elim. R.E. R 3 metalation CO 2 Me H b PDT H b Mitsudo, JOC 1979 , 4492 R 1 R 2 R 1 R 2 H R 3 R 2 R 3 R 1 R 3 Ru R 4 R 4 β -H elim. Ru R.E. R 4 RuH R 1 R 4 R 4 faster • Only H b can easily adopt syn conformation with Ru slower R 1 R 4 R 1 Ru RuH • Thus, olefins with allylic protons yield 1,4-dienes, or a formal ene reaction • Exocyclic β -H elimination will result in unfavorable anti-Bredt olefin • Sterics determines branched vs. linear selectivity • Steric bulk of norbornene accelerates reductive elimination, outcompetes - TMS/TES alkynes give excellent regioselectivity endocyclic β -H elimination R 1 Fe(CO) 3 R R 1 R 3 CpRu(MeCN) 3 PF 6 RuH 2 (CO)[PR 3 ] R 3 R R 1 R 3 R + (cat.) + R 2 R 2 A B R R then CAN R 2 R R R 1 R 2 R 3 A : B Yield R iterative synthesis of CO 2 Me TMS >98:2 78% ladderanes TsHN 7 R Warrener , JACS 1994 , 3645 n -pentyl R >98:2 79% TMS HO Alkyne + olefin + CO: formal Pauson-Khand Et O O via Me O Et >98:2 61% TMS Ru 3 (CO) 12 Et Me Ru MeO 2 C R O OAc CO (1 atm) >98:2 88% nBu TES MeO 2 C R DMF, 140 °C Mitsudo, JACS 1997 , 6187 Dérien, J. Chem. Soc. Chem. Commun. 1994 , 2551

  4. Baran Group Meeting Organoruthenium Chemistry Dongmin Xu 03/02/19 Homo Diels-Alder: Norbornene + propargyl alcohol: facile cyclopropanation RuClCp(cod) CO 2 Et OH (cat.) Cp*Ru(MeCN) 3 PF 6 + EtO 2 C O + MeOH, reflux (quant.) MeOH, rt 91% Me Mechanism: Takahashi, Chem Lett 1997 , 1273 R R Ru Ru migratory reductive insertion elimination R O OH Ru II Me R.E. Trost JACS 1993 , 8831 Formal [5+2] cycloaddition: HO R R Ru II Ru IV Ru IV OH R.E. β -OH 1,2-M.I. elim. R R • Ru IV Ru IV Ru IV OH Takahashi, Bull. Chem. Soc. Jpn. 1999 , 2475 1,2-insertion Enone-allene cycloetherification/amination: Trost JACS 2000 , 2379 Formal [6+2] cycloaddition (stoichiometric): 10% OH O H CpRu(MeCN) 3 PF 6 O Cy reductive + acetylene elimination 15% CeCl 3 •7H 2 O H O • DMF, 60 °C 0 °C H 72% Ru 67% Ru Ru(nbd) 10% O Itoh, Chem. Lett. 1983 , 499 O CpRu(MeCN) 3 PF 6 [2+2+2] alkyne trimerization: + BnHN • Ph 15% TiCl 4 3 Me N Ph Me Cp*Ru(cod)Cl nBu DMF, 60 °C Bn (1 mol%) nBu Me MeO 2 C via O + 62% DCE, rt Ru MeO 2 C Nu R 85% nBu H n Trost, JACS 1999 , 10842 93:7 A : B A B Trost, JACS 2000 , 12007 Itoh, Chem. Commun. 2000 , 549

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend