optical spectroscopy of carbon nanotube p n junction
play

Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes Ji Ung - PowerPoint PPT Presentation

Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes Ji Ung Lee College of Nanoscale Science and Engineering University at Albany-SUNY p n 6 th US-Korea Forum on Nanotechnology April 28-29, 2009 jlee1@uamail.albany.edu 1 The College


  1. Optical Spectroscopy of Carbon Nanotube p-n Junction Diodes Ji Ung Lee College of Nanoscale Science and Engineering University at Albany-SUNY p n 6 th US-Korea Forum on Nanotechnology April 28-29, 2009 jlee1@uamail.albany.edu 1

  2. The College of Nanoscale Science & Engineering and The College of Nanoscale Science & Engineering and Albany NanoTech Complex at the University at Albany Albany NanoTech Complex at the University at Albany jlee1@uamail.albany.edu 2

  3. State-of-the-Art Infrastructure NanoFab 300N NanoFab 300S $50M, 150K ft 2 $175M, 228K ft 2 32K Cleanroom 60K Cleanroom Completed: 03/04 Completion: 10/08 NanoFab 200 NanoFab 300E $100M, 250K ft 2 $16.5M, 70K ft 2 Completion: 1Q/09 4K Cleanroom Completed: 06/97 750K ft 2 cutting-edge facilities (96,000 ft 2 300mm Wafer Cleanrooms). $4.5B investments and 2500 R&D jobs on site. jlee1@uamail.albany.edu 3

  4. 300 mm Wafer Processing Capability ANT/CNSE will house over 125 state-of-the-art 300mm wafer tools when build out is completed. Designed for 32nm node & beyond but compatible with previous generations. • Unit process, module integration, and full flow capability. • Facility will have a 45nm baseline process for use by partners. Facility capable of 25 integrated wafer starts (WSD) per day. • 24/7 operation, wafer release 6 Days / Week jlee1@uamail.albany.edu 4

  5. Device fabrication on 300mm wafers >1000 devices/die ~100 nm features Advanced processes 70nm 70nm jlee1@uamail.albany.edu 5

  6. Why study the p-n diode: • The p-n junction diode is the most fundamental of all the semiconductor devices – it is the basis for the majority of solid state devices. • For fundamental understanding of semiconductors: Example: Hall-Shockley-Read Theory. For any new semiconductor, a proper characterization of the p-n diode is important. jlee1@uamail.albany.edu 6

  7. Interplay between transport and optical properties: • SWNT Diode Fabrication and DC Characteristics • Optical Properties: Photovoltaic Effect Enhanced Optical Absorption - Excitons • Origin of the Ideal Diode Behavior (BGR-Bandgap Shrinkage) jlee1@uamail.albany.edu 7

  8. Bulk p-n junction diode basics: I V N-type(electrons) P-type(holes) Diode Equation: (ideal if n=1) E C Equilibrium I=I o (e qV/nKT -1) E F E V I E C Forward Bias (Recombination) E V 2 V E C Reverse Bias 3 1 (Generation) E V jlee1@uamail.albany.edu 8

  9. Electrostatic doping: p n Carrier Concentration Split gates VG1,2 J.U. Lee et. al., APL: July 5, 2004 jlee1@uamail.albany.edu 9

  10. S D 2 gate device 20µm VG1 VG2 3 and 4 gate devices jlee1@uamail.albany.edu 10

  11. CNT diode/rectifier: (p-n or n-p diode devices) 1 10 -6 p S D -10V -10V 5 10 -7 0 10 0 -5 10 -7 n p p n S D S D +10V -10V -10V +10V -1 10 -6 -1.5 -1 -0.5 0 0.5 1 1.5 V DS (Volts) J.U. Lee et. al., APL: July 5, 2004 jlee1@uamail.albany.edu 11

  12. Nearly Ideal Diode Characteristics with n~1 (1.2) 10 -7 p n 10 -8 p 10 -9 qV = − nK T I I ( e 1 ) n B o 10 -10 VGS1,2=+/-10V Fit 10 -11 -0.4 -0.2 0 0.2 0.4 V DS (Volts) jlee1@uamail.albany.edu 12

  13. Series Resistance Limits Current: 10 -7 R s Rs: 10 -8 measured from the resistive 10 -9 mode – due to n-type to metal 10 -10 contact resistance. 10 -11 -0.4 -0.2 0 0.2 0.4 V DS (Volts) jlee1@uamail.albany.edu 13

  14. Suspended SWNT Diodes: (a) (b) p n 1 µm Suspended tube formed based on a self-registering technique jlee1@uamail.albany.edu 14

  15. Ideal Diodes with Ideality Factor n=1.0 for Suspended Diodes -7 10 1.E-07 1.E-08 -8 1.E-09 10 1.E-10 1.E-11 Fit Data -9 1.E-12 10 1.E-13 IDS (Amps) -0.5 0 0.5 -10 10 R s n=1.0 SWNTs are -11 10 perfect, substrates are not. -12 10 -13 10 -0.5 0 0.5 1 V DS (V) J.U. Lee, Appl. Phys. Lett. 87, 073101 (2005) jlee1@uamail.albany.edu 15

  16. Photovoltaic Effect 8x10 -12 ( λ =1.5 µm) n p 4x10 -12 LED Voc and Isc: IDS (Amps) Completely define PV properties for an 0 ideal diode Voc PV -4x10 -12 Isc PD Increase Intensity -12 -8x10 -0.2 -0.1 0 0.1 V DS (V) J.U. Lee, Appl. Phys. Lett. 87, 073101 (2005) jlee1@uamail.albany.edu 16

  17. Exciton Peaks in the Photocurrent Spectra (similar to SWNTs in solution) -11 10 -12 10 IDS (A) -13 -14 10 4x10 3 1 -14 10 -15 -14 10 3x10 -0.10 -0.05 0.00 0.05 0.10 VDS(V) 2 4 I SC (A) -14 2x10 5 3 -14 1x10 1 0 0.5 1.0 1.5 Energy (eV) J.U. Lee et.al., Appl. Phys. Lett. 90, 053103 (2007) jlee1@uamail.albany.edu 17

  18. DOS: One Electron Model DOS: One Electron Model D. O. S. D. O. S. D. O. S. D. O. S. E E E E 3D 2D 1D 0D Bulk Semiconductor Quantum Well Quantum Wire Quantum Dot jlee1@uamail.albany.edu 18

  19. EXCITONS IN CARBON NANOTUBES continuum Exciton Hydrogenic Levels n=1,2,3… Electron-Hole Coulomb Interaction e 2 H eh = − ε| r e − r h | results in the electron-hole binding that forms the exciton states below the conduction subband edge jlee1@uamail.albany.edu 19

  20. Sommerfeld Factor: Coulomb Interaction Excitons 3D: Absorption Coulomb Effects E Energy 2D: Absorption Coulomb Effects Energy 1D: Absorption Coulomb Effects Energy jlee1@uamail.albany.edu 20

  21. Sommerfeld Factor in 1D -> 0 at Eg T. Ogawa and T. Takaghara, Phys. Rev. B 43, 14325 (1991) jlee1@uamail.albany.edu 21

  22. Spectra with similar first energies 1 = E11 3 = E22 2.0 E B 2 I SC (Normalized) 1.5 Lack of any features at Eg due to 1.0 Sommerfeld factor <1 0.5 Side bands measure dark 0.6 0.8 1.0 1.2 1.4 exciton Energy (eV) J.U. Lee et.al., Appl. Phys. Lett. 90, 053103 (2007) jlee1@uamail.albany.edu 22

  23. Comparison to Photoluminescent Data: 2.0 +: Emperical Kataura Intensity (a.u.) Weisman et.al. Nano Lett. 3, 1235 (2003) 1.6 - E 11 and E 22 – Exciton-phonon Energy (eV) ▲ - Quasipaticle Bandgap 100 200 300 -1 ) Raman frequency (cm 1.2 Continuum: 1.55eV/nm 0.8 E11: 1.01eV/nm 0.4 1.0 1.2 1.4 1.6 1.8 2.0 E B : 0.54 eV/nm Diameter (nm) jlee1@uamail.albany.edu 23

  24. Origin of the Ideal Diode Behavior and Exciton Dissociation: -8 10 Ideal Diodes: -9 10 n=1.0 1.0 -10 40 10 3 = E22 1 = E11 30 -11 0.9 10 2 IDS (A) 4 I SC (fA) 20 5 = E33 -12 10 0.8 10 -13 10 E 11 (eV) 0 0.5 1.0 1.5 -14 10 Energy (eV) 0.7 E 11 =E a -15 10 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.6 VDS (V) Two mechanism for n=1.0: 0.5 0.4 0.5 0.6 1) Direct Band-to-Band E a (eV) 2) Diffusion of Minority Carriers Ea < E11 ?? from the doped regions jlee1@uamail.albany.edu 24

  25. Many-Body Renormalization of Band structure (BGR – band gap renormalization) and Proposed Mechanism for Exciton Dissociation: L n p I sc n E B E a E C D S 2 E F E 11 1 p 3 E V E a I sc p n Formation of heterointerfaces along a homogenous material J.U. Lee, Phys. Rev. B 75, 075409 (2007) jlee1@uamail.albany.edu 25

  26. Device Ideal for Studying BGR: Variable Doping with VG1,2: 1E-8 6V • Diode follows n p 1E-9 8V 11V ideal relation with 1E-10 S D doping. SiO 2 1E-11 IDS (A) VG1 VG2 1E-12 • Evidence of L strong BGR: Io 1E-13 when Doping . 1E-14 w/o BGR Io when 1E-15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 Doping . VDS (V) jlee1@uamail.albany.edu 26

  27. Origin of increase in Io with Doping: No Shrinkage Minority Increase shrinkage of the Carriers of the Doping band gap band gap E f E f E f P type w/o BGR: w/ BGR: semiconductor minority carrier minority decreases carrier increases! jlee1@uamail.albany.edu 27

  28. Conclusions: • Bipolar devices are more fun to study. • How do neutral excitons dissociate to generate large photocurrents? • Window to the study of many-body effects: BGR, biexctions, etc… Funding: NSF, NRI/INDEX, IFC, IBM and UAlbany jlee1@uamail.albany.edu 28

  29. Future Work: Graphene p-n junctions: Optics-like manipulation of electrons n- n- -type -type type type p- p- -type -type type type n n p p 1,2...layer 1,2...layer graphene graphene flake flake Split Gates Split Gates jlee1@uamail.albany.edu 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend