on the weak cylinder conjecture
play

ON THE (WEAK) CYLINDER CONJECTURE Finite Geometry Workshop Szeged - PowerPoint PPT Presentation

ON THE (WEAK) CYLINDER CONJECTURE Finite Geometry Workshop Szeged 2017 April 29, 2017 jan@debeule.eu 1 THREE MUSKETEERS IN PCS, 2016 2 Introduction THE STATEMENT Conjecture (S. Ball 2008) Let q be prime. Let U be a set of q 2 points of AG


  1. ON THE (WEAK) CYLINDER CONJECTURE Finite Geometry Workshop Szeged 2017 April 29, 2017 jan@debeule.eu 1

  2. THREE MUSKETEERS IN PÉCS, 2016 2

  3. Introduction THE STATEMENT Conjecture (S. Ball 2008) Let q be prime. Let U be a set of q 2 points of AG ( 3 , q ) such that for every hyperplane π of AG ( 3 , q ) | U ∩ π | ≡ 0 ( mod q ) . Then U is the set of points of q parallel lines. 3

  4. Introduction THE STATEMENT Conjecture (S. Ball 2008) Let q be prime. Let U be a set of q 2 points of AG ( 3 , q ) such that for every hyperplane π of AG ( 3 , q ) | U ∩ π | ≡ 0 ( mod q ) . Then U is the set of points of q parallel lines. Definition A cylinder in AG ( 3 , q ) is the set of points of q parallel lines. 3

  5. Combinatorics RICH AND EMPTY PLANES Let U be a set of points of AG ( 3 , q ) satisfying the conditions of the cylinder conjecture. Definition Call a plane rich if it contains more than q points of U . Call a plane empty if it contains no points of U . 4

  6. Combinatorics COMBINATORIAL OBSERVATIONS Definition Let π be a plane of AG ( 3 , q ) . Let n π := | π ∩ U | and when | π ∩ U | � = 0, call n π q − 1 the excess of π . 5

  7. Combinatorics COMBINATORIAL OBSERVATIONS Definition Let π be a plane of AG ( 3 , q ) . Let n π := | π ∩ U | and when | π ∩ U | � = 0, call n π q − 1 the excess of π . Lemma Let l be a line meeting U in k > 0 points. Then the sum of the excess of the q + 1 planes on l equals k − 1 . Corollary There exists rich planes and empty planes. 5

  8. Combinatorics COMBINATORIAL OBSERVATIONS Definition Let π be a plane of AG ( 3 , q ) . Let n π := | π ∩ U | and when | π ∩ U | � = 0, call n π q − 1 the excess of π . Lemma Let l be a line meeting U in k > 0 points. Then the sum of the excess of the q + 1 planes on l equals k − 1 . Corollary There exists rich planes and empty planes. Corollary If there is only one rich plane π , then U is the set of points of π . 5

  9. Combinatorics COMBINATORIAL OBSERVATIONS Lemma The cylinder conjecture is true for q = 3 . 6

  10. Combinatorics COMBINATORIAL OBSERVATIONS Lemma The cylinder conjecture is true for q = 3 . Conjecture The cylinder conjecture is true for q = 5 . 6

  11. The weak cylinder conjecture STATEMENT Conjecture (S. Ball 2008) Let q be prime. Let U be a set of q 2 points of AG ( 3 , q ) and let N be the set of non-determined directions. If | N | ≥ p , then U is the set of points of a cylinder. 7

  12. The weak cylinder conjecture INTERSECTION NUMBERS Lemma Let q be prime. Let U be a set of q 2 points of AG ( 3 , q ) and let N be the set of non-determined directions. If | N | ≥ q , then for every plane π of AG ( 2 , q ) | π ∩ U | ≡ 0 ( mod q ) . 8

  13. The weak cylinder conjecture INTERSECTION NUMBERS U = { ( a i , b i , c i , 1 ) | i = 1 , . . . , q 2 } . 9

  14. The weak cylinder conjecture INTERSECTION NUMBERS U = { ( a i , b i , c i , 1 ) | i = 1 , . . . , q 2 } . π ∞ : W = 0 9

  15. The weak cylinder conjecture INTERSECTION NUMBERS U = { ( a i , b i , c i , 1 ) | i = 1 , . . . , q 2 } . π ∞ : W = 0 π [ x , z , y , w ] : xX + yY + zZ + wW = 0 9

  16. The weak cylinder conjecture INTERSECTION NUMBERS U = { ( a i , b i , c i , 1 ) | i = 1 , . . . , q 2 } . π ∞ : W = 0 π [ x , z , y , w ] : xX + yY + zZ + wW = 0 l [ x , y , z ] : xX + yY + zZ = W = 0 9

  17. The weak cylinder conjecture INTERSECTION NUMBERS q 2 � R ( X , Y , Z , W ) := ( a i X + b i Y + c i Z + W ) . i = 1 10

  18. The weak cylinder conjecture INTERSECTION NUMBERS q 2 � R ( X , Y , Z , W ) := ( a i X + b i Y + c i Z + W ) . i = 1 R ( x , y , z , w ) = 0 ⇐ ⇒ π [ x , y , z , w ] contains ( a i , b i , c i , 1 ) . 10

  19. The weak cylinder conjecture INTERSECTION NUMBERS q 2 � R ( X , Y , Z , W ) := ( a i X + b i Y + c i Z + W ) . i = 1 R ( x , y , z , w ) = 0 ⇐ ⇒ π [ x , y , z , w ] contains ( a i , b i , c i , 1 ) . q 2 R ( X , Y , Z , W ) = W q 2 + σ j ( X , Y , Z ) W q 2 − j . � j = 1 10

  20. The weak cylinder conjecture INTERSECTION NUMBERS q 2 R ( X , Y , Z , W ) = W q 2 + σ j ( X , Y , Z ) W q 2 − j . � j = 1 11

  21. The weak cylinder conjecture INTERSECTION NUMBERS q 2 R ( X , Y , Z , W ) = W q 2 + σ j ( X , Y , Z ) W q 2 − j . � j = 1 q 2 ( a i X + b i Y + c i Z ) j , � S j ( X , Y , Z ) := i = 1 k � ( − 1 ) i − 1 S i ( X , Y , Z ) σ k − i ( X , Y , Z ) . k σ k ( X , Y , Z ) = i = 1 11

  22. The weak cylinder conjecture INTERSECTION NUMBERS Lemma The polynomials σ i ( X , Y , Z ) = 0 = S i ( X , Y , Z ) , i = 1 . . . q − 1 . 12

  23. The weak cylinder conjecture INTERSECTION NUMBERS Lemma The polynomials σ i ( X , Y , Z ) = 0 = S i ( X , Y , Z ) , i = 1 . . . q − 1 . q 2 � ( a i X + b i Y + c i Z + W ) q − 1 G ( X , Y , Z , W ) := i = 1 12

  24. The weak cylinder conjecture INTERSECTION NUMBERS Lemma The polynomials σ i ( X , Y , Z ) = 0 = S i ( X , Y , Z ) , i = 1 . . . q − 1 . q 2 � ( a i X + b i Y + c i Z + W ) q − 1 G ( X , Y , Z , W ) := i = 1 q 2 q − 1 � p − 1 � � � ( a i X + b i Y + c i Z ) j W p − 1 − j . G ( X , Y , Z , W ) = j i = 1 j = 0 12

  25. The weak cylinder conjecture INTERSECTION NUMBERS Lemma The polynomials σ i ( X , Y , Z ) = 0 = S i ( X , Y , Z ) , i = 1 . . . q − 1 . q 2 � ( a i X + b i Y + c i Z + W ) q − 1 G ( X , Y , Z , W ) := i = 1 q 2 q − 1 � p − 1 � � � ( a i X + b i Y + c i Z ) j W p − 1 − j . G ( X , Y , Z , W ) = j i = 1 j = 0 p − 1 � p − 1 � S j ( X , Y , Z ) W p − 1 − j . � G ( X , Y , Z , W ) = j j = 0 12

  26. The weak cylinder conjecture BACK TO THE WEAK CYLINDER CONJECTURE Corollary Every plane π [ x , y , z , w ] meets U in 0 ( mod q ) points. 13

  27. The weak cylinder conjecture BACK TO THE WEAK CYLINDER CONJECTURE Corollary Every plane π [ x , y , z , w ] meets U in 0 ( mod q ) points. Theorem (Ball, Govaerts, Storme 2006) If the set N of non-determined directions contains a conic, then U is the set of points of a plane not meeting N . 13

  28. The weak cylinder conjecture THE WEAKER CYLINDER CONJECTURE We assume that at least q + 1 directions are not determined, then σ q ( X , Y , Z ) = 0. 14

  29. The weak cylinder conjecture AN EXAMPLE q + 1 2 | x ∈ F q } , this set determines q + 3 q odd, S = { ( x , x points. 2 15

  30. Some nice polynomials SOME NICE POLYNOMIALS Lemma The polynomials σ i ( X , Y , Z ) = 0 , i = 1 . . . q . 16

  31. Some nice polynomials SOME NICE POLYNOMIALS Lemma The polynomials σ i ( X , Y , Z ) = 0 , i = 1 . . . q . Lemma R · ( G − d ) = ( X q − X ) ∂ R ∂ X + ( Y q − Y ) ∂ R ∂ Y + ( Z q − Z ) ∂ R ∂ Z + ( W q − W ) ∂ R ∂ W . Lemma d · R = X ∂ R ∂ X + Y ∂ R ∂ Y + Z ∂ R ∂ Z + W ∂ R ∂ W . 16

  32. Some nice polynomials SOME NICE POLYNOMIALS Lemma The polynomials σ i ( X , Y , Z ) = 0 , i = 1 . . . q . Lemma R · ( G − d ) = ( X q − X ) ∂ R ∂ X + ( Y q − Y ) ∂ R ∂ Y + ( Z q − Z ) ∂ R ∂ Z + ( W q − W ) ∂ R ∂ W . Lemma d · R = X ∂ R ∂ X + Y ∂ R ∂ Y + Z ∂ R ∂ Z + W ∂ R ∂ W . Corollary G · R = X q ∂ R ∂ X + Y q ∂ R ∂ Y + Z q ∂ R ∂ Z + W q ∂ R ∂ W 16

  33. Some nice polynomials THE WEAKER CYLINDER CONJECTURE Lemma Under the assumptions for the set U , the following polynomial identities hold. σ k ( Y , Z , W ) ≡ 0 , k = lq + 1 . . . ( l + 1 ) q − l , l = 0 . . . q − 1 , ( − j + 1 ) σ j + q − 1 ( Y , Z , W ) + ( Y q ∂σ j ∂ Y + Z q ∂σ j ∂ Z + W q ∂σ j ∂ W ) ≡ 0 , j = q + 1 . . . q 2 − q , Y q ∂σ j ∂ Y + Z q ∂σ j ∂ Z + W q ∂σ j ∂ W ≡ 0 , j = q 2 − q + 1 . . . q 2 . 17

  34. Some nice polynomials INTERSECTIONS WITH LINES ◮ Consider the planes π s := π [ s , 1 , 0 , α ] and π t := π [ t , 0 , 1 , − β ] ◮ Define l s , t := π s ∩ π t , this is a line through ( 1 , − s , − t , 0 ) . ◮ R s , t ( Y , Z , W ) := R ( sY + tZ , Y , Z , W ) “describes” the intersection of U with lines. 18

  35. Some nice polynomials INTERSECTIONS WITH LINES ◮ Consider the planes π s := π [ s , 1 , 0 , α ] and π t := π [ t , 0 , 1 , − β ] ◮ Define l s , t := π s ∩ π t , this is a line through ( 1 , − s , − t , 0 ) . ◮ R s , t ( Y , Z , W ) := R ( sY + tZ , Y , Z , W ) “describes” the intersection of U with lines. G s , t ( Y , Z , W ) := G ( sY + tZ , Y , Z , W ) idea: try to prove that for a fixed ( s , t ) the polynomial R s , t ( Y , Z , W ) is a q th power. 18

  36. A slightly different approach PROJECTING FROM APEX ◮ Empty planes: π [ 1 , 0 , 0 , 0 ] and π [ 0 , 1 , 0 , 0 ] , intersection point at infinity: apex a = ( 0 , 0 , 1 , 0 ) . ◮ Projection from a on a plane not through a . multiset U ′ = { ( a i , b i ) | i = 1 . . . q 2 } Define w ( x , y ) : F q × F q → N as the number of times that ( x , y ) ∈ U ′ . 19

  37. A slightly different approach PROPERTIES OF THE WEIGHT FUNCTION ◮ w ( x , 0 ) = 0 for all x ∈ F q , w ( 0 , y ) = 0 for all y ∈ F q . ◮ Let a , b ∈ F q , then � x ∈ F q w ( x , ax + b ) ≡ 0 ( mod q ) . x , y ∈ F q w ( x , y ) ≤ q 2 . ◮ � 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend