on the metric based approximate minimization of markov
play

On the Metric-based Approximate Minimization of Markov Chains* - PowerPoint PPT Presentation

On the Metric-based Approximate Minimization of Markov Chains* Giovanni Bacci, Giorgio Bacci , Kim G. Larsen, Radu Mardare Aalborg University REPAS Meeting Ljubljana, 13th June 2017 (*) accepted for publication at ICALP17 1/33


  1. On the Metric-based Approximate Minimization of Markov Chains* Giovanni Bacci, Giorgio Bacci , Kim G. Larsen, Radu Mardare Aalborg University REPAS Meeting Ljubljana, 13th June 2017 (*) accepted for publication at ICALP’17 1/33

  2. Introduction • Moore‘56, Hopcroft‘71: Minimization algorithm for DFA ( partition refinement wrt Myhill-Nerode equiv. ) • Minimization via partition refinement: • Kanellakis-Smolka’83: minimization of LTSs wrt Milner’s strong bisimulation • Baier’96: minimization of MCs wrt Larsen-Skou probabilistic bisimulation • Alur et al.’92, Yannakakis-Lee’97: minimization of timed & real-time transition systems. • and many more… 2/33

  3. A fundamental problem Jou-Smolka’90 observed that behavioral equivalences are not robust for systems with real-valued data ≁ n 0 m 0 1/3 1/3+ ε 1/3 2/3 1/3- ε 1 n 2 n 1 m 1 m 2 1 1 1 n 3 1 3/33

  4. A fundamental problem Jou-Smolka’90 observed that behavioral equivalences are not robust for systems with real-valued data S o l u t i o n ! e q u i v . d i s t a n c e ≁ � d(m 0 ,n 0 ) n 0 m 0 1/3 1/3+ ε 1/3 2/3 1/3- ε 1 n 2 n 1 m 1 m 2 1 1 1 n 3 1 3/33

  5. Metric-based Approximate Minimization Closest Bounded Minimum Significant Approximant (CBA) Approximant Bound (MSAB) 4/33

  6. Metric-based Approximate Minimization Closest Bounded Minimum Significant Approximant (CBA) Approximant Bound (MSAB) MC MC(k) d M N 4/33

  7. Metric-based Approximate Minimization Closest Bounded Minimum Significant Approximant (CBA) Approximant Bound (MSAB) MC MC(k) d M N minimize d 4/33

  8. Metric-based Approximate Minimization Closest Bounded Minimum Significant Approximant (CBA) Approximant Bound (MSAB) MC MC MC(k) MC( k ) d < 1 M M N N minimize d 4/33

  9. Metric-based Approximate Minimization Closest Bounded Minimum Significant Approximant (CBA) Approximant Bound (MSAB) MC MC MC(k) MC( k ) d < 1 M M N N minimize d minimize k 4/33

  10. CBA: Example* 1/2 m 0 1/6 1/3 m 1 m 2 1/2 1/2 1/2 1/2 m 4 1 m 5 m 3 1 1 MC(5) (*) With respect to the undiscounted 5/33 probabilistic bisimilarity distance

  11. CBA: Example* m 0 4/9 1/2 1/2 1/2 m 0 m 12 1/6 1/3 1/6 1/3 1/2 m 1 m 2 m 5 m 4 m 3 1/2 1/2 1 1 1/2 1/2 1 m 4 1 m 5 m 3 1 1 MC(5) (*) With respect to the undiscounted 5/33 probabilistic bisimilarity distance

  12. CBA: Example* m 0 4/9 1/2 1/2 1/2 m 0 m 12 1/6 1/3 1/6 1/6 1/3 1/2 m 1 m 2 m 5 m 4 m 3 1/2 1/2 1 1 1/2 1/2 1 m 0 1/2 m 4 1/3 1/6 1 m 5 m 3 1 m 12 m 12 1 MC(5) 1/2 1/2 1 m 5 m 4 1 1 (*) With respect to the undiscounted 5/33 probabilistic bisimilarity distance

  13. CBA: Example* m 0 4/9 1/2 1/2 1/2 m 0 m 12 1/6 1/3 1/6 1/6 1/3 1/2 m 1 m 2 m 5 m 4 m 3 1/2 1/2 1 1 1/2 1/2 1 m 0 1/2 m 4 1/3 1/6 1 m 5 m 3 1 m 12 m 12 1 MC(5) No unique solution! 1/2 1/2 1 m 5 m 4 1 1 (*) With respect to the undiscounted 5/33 probabilistic bisimilarity distance

  14. CBA: Example* x 79/100 79/100 m 0 m 1 m 3 n 0 1 - x - y 21/100 21/100 79/100 y m 2 m 4 21/100 n 2 n 1 1 1 1 1 6/33 (*) With respect to the undiscounted probabilistic bisimilarity distance

  15. CBA: Example* x 79/100 79/100 m 0 m 1 m 3 n 0 1 - x - y 21/100 21/100 79/100 y m 2 m 4 21/100 n 2 n 1 1 s r 1 e t e m a r a p a l m i t p O ! a l n 1 o t i a r r i e b 1 y a m x = 1 ⇣ ⌘ √ 10 + 163 30 y = 21 200 6/33 (*) With respect to the undiscounted probabilistic bisimilarity distance

  16. CBA: Example* x 79/100 79/100 m 0 m 1 m 3 n 0 1 - x - y 21/100 21/100 79/100 y m 2 m 4 21/100 n 2 n 1 1 s r 1 e t e m a r e a c p n a l a m t s i d i t p l O a m i t p O ! a l n 1 o t i a r r i ! e l b a 1 n y o a i m t a r i r s i √ x = 1 ⇣ ⌘ √ δ ( m 0 , n 0 ) = 436 675 − 163 163 10 + 163 ≈ 0 . 49 30 13500 y = 21 200 6/33 (*) With respect to the undiscounted probabilistic bisimilarity distance

  17. Talk Outline � Probabilistic bisimilarity distance • fixed point characterization (Kantorovich oper.) • remarkable properties • relation with probabilistic model checking � Metric-based Optimal Approximate Minimization • Closest Bounded Approximant (CBA) 
 — definition, characterization, complexity • Minimum Significant Approximant Bound (MSAB) 
 — definition, characterization, complexity • Expectation Maximization-like algorithm 
 — 2 heuristics + experimental results 7/33

  18. Probabilistic bisimulation 1 1 n 1 1/3 m 1 1/3 m 0 n 0 n 2 1/3 1 1 2/3 m 2 1/3 n 3 1 It tries to match the behaviors “quantitatively” 8/33

  19. Probabilistic bisimulation 1 1 1/3 n 1 1/3 m 1 1/3 m 0 n 0 n 2 1/3 1 1 2/3 m 2 1/3 n 3 1 It tries to match the behaviors “quantitatively” 8/33

  20. Probabilistic bisimulation 1 1 1/3 n 1 1/3 m 1 1/3 m 0 n 0 n 2 1/3 1/3 1 1 2/3 m 2 1/3 n 3 1 It tries to match the behaviors “quantitatively” 8/33

  21. Probabilistic bisimulation 1 1 1/3 n 1 1/3 m 1 1/3 m 0 n 0 n 2 1/3 1/3 1 1 2/3 m 2 1/3 n 3 1 1/3 It tries to match the behaviors “quantitatively” 8/33

  22. Coupling Definition (W. Doeblin 36) A coupling of a pair ( μ , ν ) of probability distributions on M is a distribution ω on M × M such that • ∑ n ∈ M ω (m,n) = μ (m) (left marginal) • ∑ m ∈ M ω (m,n) = ν (n) (right marginal) . One can think of a coupling as a measure-theoretic relation between probability distribution 9/33

  23. A quantitative generalization 1 1 1/3 n 1 1/3+ ε m 1 1/3 ε m 0 n 0 n 2 1/3- ε 1/3- ε 1 1 2/3 m 2 1/3 n 3 1/3 1 minimize ∑ ω (u,v) d(u,v) u,v ∈ M 10/33

  24. A quantitative generalization of probabilistic bisimilarity The λ -discounted probabilistic bisimilarity pseudometric is the smallest d λ : M × M → [0,1] such that 1 if ℓ (m) ≠ℓ (n) d λ (m,n) = min λ ∑ ω (u,v) d λ (u,v) otherwise ω ∈ Ω ( τ (m), τ (n)) u,v ∈ M 11/33

  25. A quantitative generalization of probabilistic bisimilarity The λ -discounted probabilistic bisimilarity pseudometric is the smallest d λ : M × M → [0,1] such that 1 if ℓ (m) ≠ℓ (n) d λ (m,n) = min λ ∑ ω (u,v) d λ (u,v) otherwise ω ∈ Ω ( τ (m), τ (n)) u,v ∈ M Kantorovich distance K(d)( μ , ν ) = min ∑ ω (u,v) d(u,v) ω ∈ Ω ( μ , ν ) u,v ∈ M 11/33

  26. Remarkable properties Theorem (Desharnais et. al 99) m ~ n iff d λ (m,n) = 0 Theorem (Chen, van Breugel, Worrell 12) The probabilistic bisimilarity distance can be computed in polynomial time 12/33

  27. Relation with Model Checking Theorem (Chen, van Breugel, Worrell 12) For all φ ∈ LTL | Pr(m ⊨ φ ) - Pr(n ⊨ φ ) | ≤ d 1 (m,n) 13/33

  28. Relation with Model Checking Theorem (Chen, van Breugel, Worrell 12) For all φ ∈ LTL | Pr(m ⊨ φ ) - Pr(n ⊨ φ ) | ≤ d 1 (m,n) …imagine that |M| ≫ |N|, we can use N in place of M approximate Pr( n ⊨ φ ) solution on φ d d 0 1 Pr( m ⊨ φ ) 13/33

  29. Talk Outline � Probabilistic bisimilarity distance • fixed point characterization (Kantorovich oper.) • remarkable properties • relation with probabilistic model checking � Metric-based Optimal Approximate Minimization • Closest Bounded Approximant (CBA) 
 — definition, characterization, complexity • Minimum Significant Approximant Bound (MSAB) 
 — definition, characterization, complexity • Expectation Maximization-like algorithm 
 — 2 heuristics + experimental results 14/33

  30. The CBA- λ problem The Closest Bounded Approximant wrt d λ Instance: An MC M, and a positive integer k Ouput: An MC Ñ, with at most k states minimizing d λ (m 0 ,ñ 0 ) d λ (m 0 ,ñ 0 ) = inf { d λ (m 0 ,n 0 ) | N ∈ MC(k) } we get a solution iff the infimum is a minimum 15/33

  31. The CBA- λ problem The Closest Bounded Approximant wrt d λ Instance: An MC M, and a positive integer k Ouput: An MC Ñ, with at most k states minimizing d λ (m 0 ,ñ 0 ) d λ (m 0 ,ñ 0 ) = inf { d λ (m 0 ,n 0 ) | N ∈ MC(k) } generalization of we get a solution iff the bisimilarity quotient infimum is a minimum 15/33

  32. CBA- λ as a Bilinear Program d λ (m 0 ,ñ 0 ) = inf { d λ (m 0 ,n 0 ) | N ∈ MC(k) } = inf { d(m 0 ,n 0 ) | Γ λ (d) ≤ d, N ∈ MC(k)} 16/33

  33. CBA- λ as a Bilinear Program d λ (m 0 ,ñ 0 ) = inf { d λ (m 0 ,n 0 ) | N ∈ MC(k) } = inf { d(m 0 ,n 0 ) | Γ λ (d) ≤ d, N ∈ MC(k)} mimimize d m 0 ,n 0 such that d m,n = 1 ` ( m ) 6 = ↵ ( n ) ( u,v ) ∈ M × N c m,n � P ` ( m ) = ↵ ( n ) u,v · d u,v  d m,n v ∈ N c m,n P u,v = ⌧ ( m )( u ) m, u 2 M , n 2 N u ∈ M c m,n P u,v = ✓ n,v m 2 M , n, v 2 N c m,n u,v � 0 m, u 2 M , n, v 2 N 16/33

  34. CBA- λ as a Bilinear Program d λ (m 0 ,ñ 0 ) = inf { d λ (m 0 ,n 0 ) | N ∈ MC(k) } = inf { d(m 0 ,n 0 ) | Γ λ (d) ≤ d, N ∈ MC(k)} mimimize d m 0 ,n 0 such that d m,n = 1 ` ( m ) 6 = ↵ ( n ) ( u,v ) ∈ M × N c m,n � P ` ( m ) = ↵ ( n ) u,v · d u,v  d m,n v ∈ N c m,n P u,v = ⌧ ( m )( u ) m, u 2 M , n 2 N u ∈ M c m,n P u,v = ✓ n,v m 2 M , n, v 2 N c m,n u,v � 0 m, u 2 M , n, v 2 N 16/33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend