minimization
play

Minimization Satoru Iwata (University of Tokyo) Submodular - PowerPoint PPT Presentation

Submodular Function Minimization Satoru Iwata (University of Tokyo) Submodular Function Minimization ( ) 0 f Assumption: X Minimization Evaluation Algorithm Oracle ( X ) f Minimizer min{ ( ) | } ? f Y Y V


  1. Submodular Function Minimization Satoru Iwata (University of Tokyo)

  2. Submodular Function Minimization   ( ) 0 f Assumption: X Minimization Evaluation Algorithm Oracle ( X ) f  Minimizer min{ ( ) | } ? f Y Y V

  3. Submodular Function Minimization Grötschel, Lovász, Schrijver (1981, 1988) Ellipsoid Method  5 ( log ) Cunningham (1985) O n M    7 8 7 ( ) O n n ( log ) O n n Iwata, Fleischer, Fujishige (2000) Schrijver (2000) Fleischer, Iwata (2000) Iwata (2002) Fully Combinatorial Iwata (2003) Orlin (2007)     4 5 5 6 ( ) (( ) log ) O n n O n n M Iwata, Orlin (2009)

  4. Submodular Functions and Polyhedra    ( ) 0 V f : 2 f R        ( ) ( ) ( ) ( ), , f X f Y f X Y f X Y X Y V Submodular Polyhedron      V ( ) { | , , ( ) ( )} P f x x R Y V x Y f Y Base Polyhedron    ( ) { | ( ), ( ) ( )} B f x x P f x V f V

  5. Min-Max Theorem Edmonds (1970) Theorem    min ( ) max{ ( ) | ( ), 0 } f Y z V z P f z  Y V    max{ ( ) | ( )} x V x B f   ( ) : min{ 0 , ( )} x v x v   ( ) ( ) ( ) z V z Y f Y    ( ) ( ) ( ) x V x Y f Y

  6. Combinatorial Approach    min ( ) max{ ( ) | ( )} f Y x V x B f  Y V

  7. Min-Max Theorem    min ( ) max{ ( ) | ( ), 0 } f Y z V z P f z  Y V    max{ ( ) | ( )} x V x B f    ( ) : min{ ( ) | } f X f Y Y X Submodular   ( ) ( ) P f P f       ( ) ( ) ( ) min ( ) z B f z V f V f Y Y  V

  8. Combinatorial Approach    min ( ) max{ ( ) | ( )} f Y x V x B f  Y V Convex Combination    x i y i  i I y i  ( f ) : Extreme Base Generated by B the Greedy Algorithm with an . Linear Ordering in L V i

  9. IFF Scaling Algorithm   1 ( ) M f  X Submodular     :      2 2 n n     ( ) ( ) | | | \ | Cut Function f X f X X V X      : Flow in the Complete Digraph ( , ) u v x    i y i  - Augmenting Path  i I s t  x    z S T z  Increase ( ) V        { | ( ) } { | ( ) } S v z v T v z v

  10. IFF Scaling Algorithm Double-Exchange S T No Path from to       : ( ) y y W  i i u v : { | : Reachable from } v v S      : min{ , } i       W : ( ) x x u v      ( , ) : ( , ) u v u v u v         S T i i v u L i u v Saturating Nonsaturating

  11. IFF Scaling Algorithm    ( ) ( ), y i W f W i I T S No Path from to     No Active Triple ( ) ( ) ( ) ( , , ) i u v x W y W f W i i  i I     ( ) ( ) z V f W n W     2 ( ) ( ) x V f W n S 1 T   Min ( W ) : f 2 n  L 5 ( log ) O n M i

  12. Submodular Function Minimization Grötschel, Lovász, Schrijver (1981, 1988) Ellipsoid Method  5 ( log ) Cunningham (1985) O n M    7 8 7 ( ) O n n ( log ) O n n Iwata, Fleischer, Fujishige (2000) Schrijver (2000) Fleischer, Iwata (2000) Iwata (2002) Fully Combinatorial Iwata (2003) Orlin (2007)     4 5 5 6 ( ) (( ) log ) O n n O n n M Iwata, Orlin (2009)

  13. Fully Combinatorial Algorithm Addition, Subtraction, Comparison Oracle Call (Function Evaluation) Compute      , R Z Multiplication     /      q , R R Compute Division • Neglect the Gaussian Elimination Step. • Use Nonnegative Integer Combination Instead of Convex Combination. • Choose a Step Length Appropriately.

  14. Finding All Minimizers   , Y : , : X X Y X Y Minimizer Minimizer The set of minimizers forms a distributive lattice. [G.Birkhoff] Any distributive lattice can be represented as the set of ideals of a partial ordered set.

  15. Partial Order of an Extreme Base y  Extreme ( f ) : B Bixby, Cunningham, Topkis (1985) v v  v ( ) ( ) : y X f X Tight X 2 n 1    Represent all tight sets ( ( )) ( ( )), y L v f L v v V ( y ) G v . u ( u ) : Maximal Ideal Excluding H u  Test if is tight. ( ) { } H u v ( u ) H v u If not, then .

  16. Finding All Minimizers Extreme Base ( ) ( x ) : G y G Superposition of i y i  ( f ) B SCC Decomposition Partial Order (DAG)  ( ) 0 x v ( ) G y i Convex Combination x   ( ) 0 x v   i y i  i I     ( 0 , ) i I i  ( ) 0 x v

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend