quantum and classical algorithms for approximate
play

Quantum and Classical Algorithms for Approximate Submodular Function - PowerPoint PPT Presentation

Quantum and Classical Algorithms for Approximate Submodular Function Minimization Yassine Hamoudi, Patrick Rebentrost, Ansis Rosmanis, Miklos Santha arXiv: 1907.05378 1. Approximate Submodular Function Minimization 2. Quantum speed-up for


  1. Quantum and Classical Algorithms for Approximate Submodular Function Minimization Yassine Hamoudi, Patrick Rebentrost, Ansis Rosmanis, Miklos Santha arXiv: 1907.05378

  2. 1. Approximate Submodular Function Minimization 2. Quantum speed-up for Importance Sampling

  3. 1 Approximate Submodular Function Minimization

  4. Submodular Function 4 F : 2 [ n ] → ℝ A submodular function is a set function satisfying the diminishing returns property : ∀ A ⊂ B ⊂ [ n ] and i ∉ B , F ( A ∪ { i }) − F ( A ) ≥ F ( B ∪ { i }) − F ( B )

  5. Submodular Function 4 F : 2 [ n ] → ℝ A submodular function is a set function satisfying the diminishing returns property : ∀ A ⊂ B ⊂ [ n ] and i ∉ B , F ( A ∪ { i }) − F ( A ) ≥ F ( B ∪ { i }) − F ( B ) Example: area covered by cameras A B

  6. Submodular Function 4 F : 2 [ n ] → ℝ A submodular function is a set function satisfying the diminishing returns property : ∀ A ⊂ B ⊂ [ n ] and i ∉ B , F ( A ∪ { i }) − F ( A ) ≥ F ( B ∪ { i }) − F ( B ) Example: area covered by cameras A + i B + i

  7. Submodular Function 5 F : 2 [ n ] → ℝ A submodular function is a set function satisfying the diminishing returns property : ∀ A ⊂ B ⊂ [ n ] and i ∉ B , F ( A ∪ { i }) − F ( A ) ≥ F ( B ∪ { i }) − F ( B ) Example: size of a cut |cut( A )| = 2 B |cut( B )| = 5 A

  8. Submodular Function 5 F : 2 [ n ] → ℝ A submodular function is a set function satisfying the diminishing returns property : ∀ A ⊂ B ⊂ [ n ] and i ∉ B , F ( A ∪ { i }) − F ( A ) ≥ F ( B ∪ { i }) − F ( B ) Example: size of a cut |cut( A )| = 2 B |cut( B )| = 5 A |cut( A + i )| = 4 |cut( B + i )| = 6 i

  9. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle )

  10. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle ) Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981)

  11. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle ) Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981) Exact Minimization: S ⋆ F ( S ⋆ ) = min find such that S ⊂ [ n ] F ( S ) O ( n 2 log M ) • ˜ ˜ O ( n 3 ) Lee, Sidford, Wong FOCS’15: or where M = max | F ( S ) |

  12. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle ) Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981) Exact Minimization: S ⋆ F ( S ⋆ ) = min find such that S ⊂ [ n ] F ( S ) O ( n 2 log M ) • ˜ ˜ O ( n 3 ) Lee, Sidford, Wong FOCS’15: or where M = max | F ( S ) | ε -Approx. Minimization: S ⋆ F ( S ⋆ ) ≤ min find such that S ⊂ [ n ] F ( S ) + ϵ ( F : 2 [ n ] → [ − 1,1] )

  13. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle ) Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981) Exact Minimization: S ⋆ F ( S ⋆ ) = min find such that S ⊂ [ n ] F ( S ) O ( n 2 log M ) • ˜ ˜ O ( n 3 ) Lee, Sidford, Wong FOCS’15: or where M = max | F ( S ) | ε -Approx. Minimization: S ⋆ F ( S ⋆ ) ≤ min find such that S ⊂ [ n ] F ( S ) + ϵ ( F : 2 [ n ] → [ − 1,1] ) • Previous work: ˜ O ( n 5/3 / ϵ 2 ) (classical) (Chakrabarty, Lee, Sidford, Wong STOC’17)

  14. Submodular Function Minimization 6 Evaluation oracle access: given S obtain F(S) . ( time = #queries to the oracle ) Submodular functions can be minimized in polynomial time (Grotschel, Lovasz, Shrijver 1981) Exact Minimization: S ⋆ F ( S ⋆ ) = min find such that S ⊂ [ n ] F ( S ) O ( n 2 log M ) • ˜ ˜ O ( n 3 ) Lee, Sidford, Wong FOCS’15: or where M = max | F ( S ) | ε -Approx. Minimization: S ⋆ F ( S ⋆ ) ≤ min find such that S ⊂ [ n ] F ( S ) + ϵ ( F : 2 [ n ] → [ − 1,1] ) • Previous work: ˜ O ( n 5/3 / ϵ 2 ) (classical) (Chakrabarty, Lee, Sidford, Wong STOC’17) • Our result: ˜ ˜ O ( n 3/2 / ϵ 2 ) O ( n 5/4 / ϵ 5/2 ) or (classical) (quantum)

  15. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function:

  16. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension:

  17. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: n = 2 F (Ø) = 0 F ({1}) = 10 F ({2}) = 6 F ({1,2}) = 3

  18. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: n = 2 (1,1) F (Ø) = 0 F ({1}) = 10 F ({2}) = 6 (1,0) (0,1) F ({1,2}) = 3 [0,1] 2 (0,0)

  19. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) F ({1,2}) n = 2 F ({2}) (1,1) F (Ø) = 0 F ({1}) = 10 F ({2}) = 6 (1,0) (0,1) F ({1,2}) = 3 F (Ø) (0,0)

  20. Lovász Extension 7 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) F ({1,2}) n = 2 F ({2}) (1,1) F (Ø) = 0 F ({1}) = 10 F ({2}) = 6 (1,0) (0,1) F ({1,2}) = 3 F (Ø) (0,0)

  21. Lovász Extension 8 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) The Lovász extension is: F ({1,2}) F ({2}) (1,1) (1,0) (0,1) F (Ø) (0,0)

  22. Lovász Extension 8 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) The Lovász extension is: F ({1,2}) F ({2}) (1,1) • Piecewise linear (1,0) (0,1) F (Ø) (0,0)

  23. Lovász Extension 8 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) The Lovász extension is: F ({1,2}) F ({2}) (1,1) • Piecewise linear • Convex i ff F is submodular (Lovász 1983) (1,0) (0,1) F (Ø) (0,0)

  24. Lovász Extension 8 Discrete Optimization F : 2 [ n ] → ℝ Set function: Continuous Optimization f : [0,1] n → ℝ Lovász extension: F ({1}) The Lovász extension is: F ({1,2}) F ({2}) (1,1) • Piecewise linear • Convex i ff F is submodular (Lovász 1983) (1,0) (0,1) • Evaluable using n queries to F . F (Ø) (0,0)

  25. Stochastic Subgradient Descent 9 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable)

  26. Stochastic Subgradient Descent 9 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . g ( x ) f ( x ) x

  27. Stochastic Subgradient Descent 9 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . g ( x ) f ( x ) x

  28. Stochastic Subgradient Descent 9 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . Stochastic Subgradient at x : random variable satisfying g ( x ) ˜ E [˜ g ( x )] = g ( x ) g ( x ) w.p. 1/2 ˜ g ( x ) f ( x ) g ( x ) w.p. 1/2 ˜ x

  29. Stochastic Subgradient Descent 10 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . Stochastic Subgradient at x : random variable satisfying g ( x ) ˜ E [˜ g ( x )] = g ( x ) (projected) Stochastic Subgradient Descent

  30. Stochastic Subgradient Descent 10 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . Stochastic Subgradient at x : random variable satisfying g ( x ) ˜ E [˜ g ( x )] = g ( x ) (projected) Stochastic Subgradient Descent x t C

  31. Stochastic Subgradient Descent 10 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . Stochastic Subgradient at x : random variable satisfying g ( x ) ˜ E [˜ g ( x )] = g ( x ) (projected) Stochastic Subgradient Descent x t − η ˜ g ( x t ) C

  32. Stochastic Subgradient Descent 10 Convex function f : C → ℝ on a convex set C . (not necessarily di ff erentiable) Subgradient at x : slope g(x) of any line that is below the graph of f and intersects it at x . Stochastic Subgradient at x : random variable satisfying g ( x ) ˜ E [˜ g ( x )] = g ( x ) (projected) Stochastic Subgradient Descent x t − η ˜ g ( x t ) projection x t +1 C

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend