on canonical coupling of classical geometry to quantum
play

On canonical coupling of classical geometry to quantum matter 1. - PDF document

On canonical coupling of classical geometry to quantum matter 1. Introduction R ab 1 2 g ab R = 8 G c 4 T ab 1.1 classical T , classical R fine. 1.2 quantum T , quantum R nobody knows. 1.3 quantum T , classical R try it


  1. On canonical coupling of classical geometry to quantum matter 1. Introduction R ab − 1 2 g ab R = 8 πG c 4 T ab 1.1 classical T , classical R — fine. 1.2 quantum T , quantum R — nobody knows. 1.3 quantum T , classical R — try it canonically! 2. Poisson, Dirac, and Alexandrov brackets 3. Coarse-grained Alexandrov equation 4. Application to gravity 5. Fundamental uncertainty of geometry, decoherence 6. Conclusion 6.1 Semiclassical evolution must be coarse-grained 6.2 Classical part, too, gets noisy. 6.3 Reasonable decoherence obtained. 6.4 Covariant coarse-graining? 1

  2. 2.1 Classical: Poisson bracket, Liouville equation of motion. � ∂A ∂B − ∂A ∂B � � { A, B } P ≡ ∂q n ∂q n ∂p n ∂p n n ρ = { H, ρ } P ˙ � ρ ( q, p ) dqdp = 1. where ρ ( q, p ) ≥ 0, 2.2 Quantum: Dirac bracket, Schrodinger (von Neumann) equation. { A, B } D ≡ − i h [ A, B ] . ¯ ρ = { H, ρ } D ˙ where ρ ≥ 0, trρ = 1. 2.3 Semiclassical: Alexandrov (1981) bracket and equation. { A, B } A = { A, B } P + 1 2 { A, B } D − 1 2 { B, A } D ρ = { H, ρ } A ˙ � ρ ( q, p ) dqdp = 1. where ρ ( q, p ) ≥ 0, tr 2

  3. 3. Coarse-grained Alexandrov equation. H = H ( q 1 , q 2 , p 1 , p 2 ) = H 1 ( q 1 , p 1 ) + H 2 ( q 2 , p 2 ) + H I ( q 1 , q 2 , p 1 , p 2 ) where ( q 1 , p 1 ) are quantum, ( q 2 , p 2 ) are classical. � J α 1 ( q 1 , p 1 ) J α ( J α 1 , J α H I ( q 1 , p 1 , q 2 , p 2 ) = 2 ( q 2 , p 2 ) , 2 � = 1) . α Noisy interaction: � �� � H noise J α 1 ( q 1 , p 1 ) + δJ α J α 2 ( q 2 , p 2 ) + δJ α ( q 1 , p 1 , q 2 , p 2 ) = 1 ( t ) 2 ( t ) I where δJ 1 , δJ 2 are classical noises. H noise = H 1 + H 2 + H noise I � � { H noise , ρ } A ρ = ˙ noise . Choose white-noices: noise = 1 n δ ( t ′ − t ) , � � δJ α n ( t ′ ) δJ β 2Λ αβ n ( t ) n = 1 , 2 . ρ = − i h [ H, ρ ] + 1 2 { H, ρ } P − 1 ˙ 2 { ρ, H } P ¯ − 1 1 , ρ ]] + 1 Λ αβ 1 , [ J β Λ αβ 2 , { J β � 2 [ J α � 1 { J α 2 , ρ } P } P 4 4 α,β α,β Lindblad’s condition (1976) for positivity: Λ 1 Λ 2 = I . 3

  4. 4. Application to gravity. ( q 1 , p 1 ) ≡ ( q, p ) quantized non − relativistic matter ( q 2 , p 2 ) ≡ ( φ, π ) weak classical gravitational field φ ≡ 1 2 c 2 ( g 00 − 1) classical Newtonian potential f = T 00 /c 2 operator of mass distribution � 1 1 � � c 2 π 2 + |∇ φ | 2 � H ( q, p, φ, π ) = H m ( q, p ) + + r φ ( r ) f ( r ) 8 πG r Coarse-grained Alexandrov equation: ρ = − i h [ H m , ρ ] − i � ˙ r φ ( r )[ f ( r ) , ρ ] ¯ ¯ h � 1 − 1 c 2 π ( r ) δρ δφ ( r ) + ∆ φ ( r ) δρ + 1 δρ � � � � � f ( r ) , 4 πG δπ ( r ) 2 δπ ( r ) + r r δ 2 ρ − 1 r ′ λ ( r, r ′ )[ f ( r ) , [ f ( r ′ ) , ρ ] ] + 1 � � � � r ′ λ − 1 ( r, r ′ ) δπ ( r ) δπ ( r ′ ) . 4 4 r r � � ρ ( φ, π ) D φ D π in Newtonian approximation. Reduced dynamics of ρ m = Drop term 1 /c 2 and assume ρ m determines Newton potential φ : G/ 2 � � � � � | r − r ′ | [ f + ( r ′ ) + f − ( r ′ )] ρ ( φ, π ) D π = δ φ ( r ) + ρ m . r ′ r Subscripts + and − assure ρ m ’s hermiticity. Integrate both sides over φ, π ! ρ m = − i h [ H m + H g , ρ m ] − 1 � � ˙ r ′ λ ( r, r ′ )[ f ( r ) , [ f ( r ′ ) , ρ m ] ¯ 4 r H g = − G f ( r ) f ( r ′ ) � � | r − r ′ | . 2 r r ′ 4

  5. 5. Fundamental uncertainty of geometry, decoherence noise = 1 2 λ − 1 ( r ′ , r ) δ ( t ′ − t ) , � � δf ( r ′ , t ′ ) δf ( r, t ) h 2 noise = ¯ 2 λ ( r ′ , r ) δ ( t ′ − t ) . � � δφ ( r ′ , t ′ ) δφ ( r, t ) In Newtonian approximation: ∆ � φ ( r ) � = 4 πG � f ( r ) � . ∆∆ ′ λ ( r, r ′ ) = (4 πG ) 2 λ − 1 ( r, r ′ ) Di´ osi and Luk´ acs (1987): h ) | r − r ′ | − 1 λ ( r, r ′ ) = ( G/ ¯ Di´ osi (1987): ρ m = − i h [ H m + H g , ρ m ] − 1 G/ ¯ h � � | r − r ′ | [ f ( r ) , [ f ( r ′ ) , ρ m ] . ˙ ¯ 4 r r ′ Ghirardi et al. (1990): cutoff 10 − 5 cm . Decoherence at characteristic time τ = ¯ h/ ∆ U G , where ∆ U G : quantum spread of the Newtonian self-energy. Pearle and Squires (1995): Verification in proton-decay experiments(!?) 5

  6. References [1] I.V. Aleksandrov, Z.Naturforsch. 36A , 902 (1981). [2] G.Lindblad, Commun.Math.Phys. 48 , 119 (1976). [3] L.Di´ osi and B.Luk´ acs, Annln.Phys. 44 , 488 (1987). [4] L.Di´ osi, Phys.Lett. 120A , 377 (1987); Phys.Rev. A40 , 1165 (1989). [5] G.C.Ghirardi, R.Grassi and P.Pearle, Phys.Rev. A42 , 1057 (1990). [6] E.Squires and P.Pearle, Phys.Rev.Lett. 73 , 1 (1994). 6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend